확장메뉴
주요메뉴


소득공제
미리보기 공유하기

데이터 과학자가 되는 핵심 기술

: 데이터 분석에 필요한 수학, 통계, 프로그래밍의 기본

[ 2018년 대한민국학술원 우수학술도서 선정도서 ]
리뷰 총점7.0 리뷰 1건 | 판매지수 36
베스트
프로그래밍 언어 top100 6주
정가
30,000
판매가
27,000 (10% 할인)
YES포인트
eBook이 출간되면 알려드립니다. eBook 출간 알림 신청
소중한 당신에게 5월의 선물 - 산리오 3단 우산/디즈니 우산 파우치/간식 접시 머그/하트 이중 머그컵
월간 개발자 2022년 5월호
내일은 개발자! 코딩테스트 대비 도서전
5월 전사
5월 쇼핑혜택
1 2 3 4 5

품목정보

품목정보
출간일 2017년 12월 11일
쪽수, 무게, 크기 480쪽 | 896g | 188*235*25mm
ISBN13 9791161750767
ISBN10 1161750762

이 상품의 태그

책소개 책소개 보이기/감추기

이 책은 데이터 과학의 원리를 전달하려는 기본적 취지에 맞게, 통계나 수학적 수식이 형성되는 개념을 설명해 준다. 꼭 필요한 최소한의 수학적 개념만 소개하기 때문에 수학 울렁증이 있는 사람도 쉽게 읽을 수 있다. 목적을 이해하고 원리를 알면 수식을 무작정 외울 필요가 없다는 것을 이제야 깨닫게 될 것이다. 더불어 데이터 과학에서 통계, 수학, R과 파이썬 같은 프로그래밍 지식이 왜 필요한지 확실히 알게 된다. 데이터의 수집부터 필요한 정보만 정제하고, 유형을 살펴서 분석하고, 결과의 해석까지 필요한 원리를 복합적으로 다룬다.

목차 목차 보이기/감추기

1장. 데이터 과학자처럼 말하는 방법
__데이터 과학이란 무엇인가?
__데이터 과학 벤 다이어그램
__도메인 지식
__더 많은 전문 용어
__데이터 과학 사례 연구
__요약


2장. 데이터 유형
__데이터의 특색
__데이터를 구분해야 하는 이유
__구조적 데이터와 비구조적 데이터 비교
__정량적 데이터와 정성적 데이터
__지금까지 정리
__데이터의 4가지 수준
__제 눈에 안경인 데이터
__요약


3장. 데이터 과학의 다섯 단계
__데이터 과학 개론
__다섯 단계 개요
__데이터 탐색
__요약


4장. 기초 수학
__학문으로서의 수학
__기본 기호 및 용어
__선형 대수학
__요약


5장. 확률의 기초와 원리
__기본 정의
__확률
__베이지안과 빈도 확률
__복합 이벤트
__조건부 확률
__확률의 규칙
__조금 깊이 들어가기
__요약


6장. 고급 확률
__전체 포괄적인 이벤트
__베이지안 아이디어 재검토
__확률 변수
__요약


7장. 기초 통계
__통계란?
__데이터를 얻고 표본 추출하는 방법
__표본 추출 데이터
__통계를 측정하는 방법
__경험적 규칙
__요약


8장. 고급 통계
__점 추정치
__표본 분포
__신뢰 구간
__가설 검정
__요약


9장. 데이터 의미 전달
__커뮤니케이션이 중요한 이유
__효과적인 시각화와 비효과적인 시각화 식별
__그래프와 통계가 거짓말할 때
__구두 의사소통
__왜/어떻게/어떤 프레젠테이션 전략
__요약


10장. 머신 러닝 요점
__머신 러닝이란 무엇인가?
__머신 러닝은 완벽하지 않다.
__머신 러닝은 어떻게 작동하는가?
__머신 러닝의 유형
__통계적 모델링은 이 모든 것을 어떻게 맞출까?
__선형 회귀
__로지스틱 회귀
__확률, 공산, 로그 공산


11장. 의사 결정 트리에서 자라는 예측
__나이브 베이즈 분류
__의사 결정 트리
__자율 학습
__K-means 클러스터링
__K와 클러스터 검증을 위한 최적의 수 선택
__특징 추출 및 주요 구성 요소 분석
__요약


12장. 필수 요소를 넘어서
__편향 분산 트레이드오프
__K겹 교차 검증
__그리드 검색
__앙상블 기술
__신경망
__요약


13장. 사례 연구
__사례 연구 1: 소셜 미디어를 기반주가 예측
__사례 연구 2: 왜 일부 사람들은 배우자를 속일까?
__사례 연구 3: 텐서플로 사용
__요약

저자 소개 (2명)

출판사 리뷰 출판사 리뷰 보이기/감추기

이 책에서 다루는 내용

■ 데이터 과학의 가장 중요한 다섯 가지 단계
■ 데이터를 현명하게 다루는 방법
■ 수학과 프로그래밍 간의 격차 해소
■ 확률과 계산법, 통계적 모델을 사용해 데이터를 정제하고 실행 가능한 결과를 얻는 방법
■ 기본적인 머신 러닝 모델의 구축과 평가
■ 머신 러닝 모델의 성공 여부를 결정짓는 가장 효과적인 측정 지표 탐색
■ 실행 가능한 통찰력을 전달하는 데이터 시각화
■ 머신 러닝 개념을 문제에 적용한 실제 예측

이 책의 대상 독자

이 책은 모든 도메인에 대한 데이터 과학의 기본 업무를 이해하고 활용하고자 하는 사람들을 위한 책이다.
기본 수학(대수, 확률)을 잘 알고 있어야 하며, 의사 코드뿐만 아니라 R/파이썬의 코드 조각을 읽기 편해야 한다. 데이터 분야의 작업 경험은 없어도 된다. 그러나 이 책에서 제시한 기술을 배워서 자신들의 데이터셋이나 제공된 데이터셋에 적용하려는 열정은 있어야 한다.

이 책의 구성

1장. '데이터 과학자처럼 말하는 방법'에서는 데이터 과학자가 사용하는 기본 용어를 소개하고, 이 책 전반에 걸쳐 해결할 문제의 유형을 살펴본다.
2장. '데이터 유형'에서는 데이터의 다양한 수준과 유형 및 각 유형을 조작하는 방법을 살펴보면서 데이터 과학에 필요한 수학을 다루기 시작한다.
3장. '데이터 과학의 다섯 단계'에서는 데이터 조작 및 정제를 비롯해 데이터 과학을 수행하는 다섯 가지 기본 단계를 알아보고, 각 단계의 예를 자세히 보여준다.
4장. '기초 수학'에서는 미적분 선형 대수 등의 예를 살펴보고 해결함으로써 데이터 과학자의 행동을 안내하는 기본 수학 원리를 발견할 수 있다.
5장. '확률의 기초와 원리'에서는 초보자의 시각으로 확률 이론을 살펴보고 무작위 세상을 이해하는 데 확률이 어떻게 사용되는지 설명한다.
6장. '고급 확률'에서는 앞에서 살펴본 원리를 사용하고 세상의 숨겨진 의미를 밝히기 위해 베이즈 정리 같은 원리를 소개하고 적용한다.
7장. '기초 통계'에서는 통계적 추론이 실험의 기본, 표준화, 무작위 표본 추출을 사용해서 설명하려는 문제 유형을 다룬다.
8장. '고급 통계'에서는 가설 검정과 신뢰 구간을 사용해 실험으로부터 통찰력을 얻는다. 적절한 검정 방법을 선택하고, p-값과 다른 결과를 해석하는 것은 매우 중요하다.
9장. '데이터 의미 전달'에서는 상관관계와 인과관계가 데이터 해석에 어떻게 영향을 주는지 설명한다. 또한 결과를 세상과 공유하기 위해 시각화를 사용한다.
10장. '머신 러닝 요점'에서는 머신 러닝의 정의에 중점을 두고 머신 러닝이 언제 어떻게 적용되는지에 대한 실제 사례를 살펴본다. 모델 평가의 타당성에 대한 기본적인 지식도 소개한다.
11장. '의사 결정 트리에서 자라는 예측'에서는 좀 더 복잡한 데이터 관련 작업을 해결하기 위해 의사 결정 트리 및 베이지안 기반 예측과 같은 좀 더 복잡한 머신 러닝 모델을 살펴본다.
12장. '필수 요소를 넘어서'에서는 편향과 분산을 포함해 데이터 과학을 안내하는 신비한 힘을 소개한다. 신경망은 현대의 딥러닝 기술로 소개한다.
13장. '사례 연구'에서는 다수의 사례 연구를 통해 데이터 과학의 아이디어를 확고히 한다. 주가 예측 및 필체 감지를 비롯해 여러 가지 예를 통해 전체 데이터 과학의 작업 흐름을 처음부터 끝까지 여러 번 따라갈 것이다.

지은이의 말

이 책의 주제는 데이터 과학이다. 데이터 과학은 지난 수십 년 동안 빠르게 성장해 온 연구 및 응용 분야로, 점점 커져가는 미디어 시장과 직업 시장에서 많은 주목을 받고 있다. 최근 미국은 최초의 수석 데이터 과학자로 DJ 파틸(Patil)을 임명했다. 솔직히 말하면 이러한 움직임은 대대적으로 데이터 팀을 채용하기 시작한 기술 회사를 모델로 한 것이다. 데이터 과학 기술은 수요가 많고 응용 분야는 오늘날의 직업 시장보다 훨씬 더 범위가 확장되고 있다.
이 책은 수학/프로그래밍/도메인 전문 지식 간의 격차를 줄이려고 한다. 오늘날 대부분의 사람은 그중 적어도 한 가지(아마도 두 가지)의 전문 지식을 보유하고 있지만, 바람직한 데이터 과학은 세 가지 모두 조금씩 필요하다. 우리는 세 가지 영역의 주제로 뛰어들어 복잡한 문제를 해결할 것이다. 또한 과학적이고 정확한 결론을 도출하기 위해 데이터를 정제하고 탐색하고 분석할 것이다. 복잡한 데이터 작업을 해결하기 위해 머신 러닝과 딥러닝 기술이 적용될 것이다.

옮긴이의 말

구글에서 ‘Data Science’로 검색하면 약 7천만 건의 결과가 나오고, '데이터 과학'으로 검색하면 70만 건의 한국어 검색 결과가 나온다. 데이터 과학 분야가 자리를 잡아가고 있음을 보여주는 유의미한 숫자다.
데이터 과학은 이미 오래전부터 통계, 수학, 프로그래밍 분야에서 존재해 왔다. 과거 '데이터 과학'은 그리 많지 않은 데이터 속에서 분야별로 추구하는 목적과 접근 방법이 달랐다면, 요즘은 잠자기 전까지도 손을 떼지 못하게 만드는 모바일 디지털 환경과 매 순간을 알리고 싶은 소셜 미디어 유저들의 활동으로 인해 기하급수적으로 늘어난 데이터를 과학적으로 해석하려는 것을 아우르는 개념이 '데이터 과학'이다.
이 책은 데이터 과학에서 통계, 수학, R과 파이썬 같은 프로그램을 왜 공부해야 하는지 확실히 알려준다. 데이터를 수집해서 정제하고, 유형을 살펴서 분석하고, 해석까지 필요한 원리를 복합적으로 다룬다. 꼭 필요한 최소한의 수학적 개념을 소개하지만, 수학 울렁증이 있는 사람도 쉽게 읽을 수 있다. 이 책을 읽고 나면 등한시했던 확률을 중심으로 수학과 통계를 재정립할 수 있다.
또한 데이터 과학의 원리를 전달하려는 이 책의 기본적 취지에 맞게 통계나 수학적 수식이 형성되는 개념도 설명해준다. 목적을 이해하고 원리를 알면 수식을 무작정 외울 필요가 없다는 것을 깨닫게 된다.
그리고 원리를 실행으로 옮겨 보기 위해 파이썬으로 실습할 수 있게 했다. 정확히 말하면 데이터 과학에 필요한 기본적인 파이썬 모듈을 익히게 된다. 프로그래밍을 잘 몰라도 파이썬 코드를 이해하기 쉽도록 기술했다. 읽어 갈수록 어렵다면 파이썬 내장 함수 구문을 따라 하기만 해도 된다. 핵심은 파이썬의 출력 결과를 정확히 해석하는 것이다.
단순히 통계 용어 풀이가 아니라, 다양한 예제를 통해 여러 관점에서 통계를 적용하는 안목을 키울 수 있다. 특히 현실적인 경험을 예제로 다루기 때문에 이해가 쉽고 나중에 응용하기에도 유리하다. 머신 러닝을 알게 되고 실습을 따라 해보면 딥러닝과 텐서플로도 엿볼 수 있다. 여러 가지 재미있는 예제도 많다. 안면 인식, 필체 감지, 트윗으로 주가 예측, 심지어 배우자의 외도를 예측하는 모델도 다룬다.
궁극적으로 이 책은 데이터 과학을 위해 기초 수학과 통계가 어떻게 연결돼 있는지 비밀을 푸는 열쇠를 제공한다.
이제 책을 펼쳐서 열쇠를 찾아보자!


회원리뷰 (1건) 리뷰 총점7.0

혜택 및 유의사항?
구매 데이터 과학자가 되는 핵심 기술 내용 평점3점   편집/디자인 평점4점 YES마니아 : 플래티넘 j****p | 2019.03.20 | 추천0 | 댓글0 리뷰제목
솔직히 이 책은 그냥 흔한 책이라고 생각한다. 데이터 과학자, 혹은 데이터 분석가라는 직업이 유행하면서 자연스레 이들이 무슨일을 하고 이들과 같이 되려면 무엇이 필요한지 설명하는 가이드 북 형식들이 많이 출판되었는데 이 책도 그런 책들 중 하나이다. 내용이 엄청 나쁜것은 아니나 반대로 엄청 좋은 것도 아니다. 사실 이런 가이드 책이 큰 차이는 없다고 생각한다. 한번은 스윽;
리뷰제목

솔직히 이 책은 그냥 흔한 책이라고 생각한다. 데이터 과학자, 혹은 데이터 분석가라는 직업이 유행하면서 자연스레 이들이 무슨일을 하고 이들과 같이 되려면 무엇이 필요한지 설명하는 가이드 북 형식들이 많이 출판되었는데 이 책도 그런 책들 중 하나이다. 내용이 엄청 나쁜것은 아니나 반대로 엄청 좋은 것도 아니다. 사실 이런 가이드 책이 큰 차이는 없다고 생각한다. 한번은 스윽 읽을만 하다

댓글 0 이 리뷰가 도움이 되었나요? 공감 0

한줄평 (2건) 한줄평 총점 8.0

혜택 및 유의사항 ?
구매 평점3점
흔한 데이터분석 가이드 책
이 한줄평이 도움이 되었나요? 공감 0
YES마니아 : 플래티넘 j****p | 2019.03.20
평점5점
그 무엇을 미래에 하던지 이런건 기본이 될꺼기때문에. 난 소외당하고 싶지않다
이 한줄평이 도움이 되었나요? 공감 0
c******1 | 2018.01.31
  •  쿠폰은 결제 시 적용해 주세요.
1   27,000
뒤로 앞으로 맨위로 aniAlarm