이미지 검색을 사용해 보세요
검색창 이전화면 이전화면
최근 검색어
인기 검색어

소득공제 베스트셀러
자연어 처리를 위한 허깅페이스 트랜스포머 하드 트레이닝
코드와 결과물로 이해하는 언어 모델과 트랜스포머
베스트
OS/데이터베이스 32위 IT 모바일 top100 1주
가격
27,500
10 24,750
YES포인트?
1,370원 (5%)
5만원 이상 구매 시 2천원 추가 적립
결제혜택
카드/간편결제 혜택을 확인하세요

이미 소장하고 있다면 판매해 보세요.

  •  국내배송만 가능
  •  최저가 보상
  •  문화비소득공제 신청가능

이 상품의 태그

상세 이미지

책소개

목차

1 자연어 처리와 허깅페이스

_1.1 허깅페이스 소개
__1.1.1 Datasets
__1.1.2 Models
__1.1.3 Spaces
__1.1.4 Docs
_1.2 자연어 처리와 허깅페이스의 관계

2 환경 구축

_2.1 구글 코랩 환경 구축
__2.1.1 계정 생성
__2.1.2 새 노트북 만들기
__2.1.3 코드 실행
__2.1.4 파일 저장
__2.1.5 깃 코드 열기
_2.2 구글 드라이브 마운트

3 허깅페이스 주요 라이브러리

_3.1 Datasets 라이브러리
__3.1.1 Datasets 설치
__3.1.2 Datasets 실습
_3.2 Transformers 라이브러리
__3.2.1 Transformers 설치
__3.2.2 Tokenizer
__3.2.3 DataCollator
__3.2.4 Model
__3.2.5 AutoClass
__3.2.6 Trainer, TrainingArguments
__3.2.7 Pipeline
_3.3 미세조정
__3.3.1 토크나이저와 모델 준비
__3.3.2 데이터 준비 및 전처리
__3.3.3 학습 파라미터 선정
__3.3.4 학습 진행
__3.3.5 성능 평가
__3.3.6 모델 저장
_3.4 허깅페이스 허브 등록
__3.4.1 push_to_hub()
__3.4.2 CLI
__3.4.3 huggingface-hub

4 보조 라이브러리

_4.1 Tokenizers 라이브러리
__4.1.1 Tokenizer 학습
__4.1.2 모델 초기화 후 학습
_4.2 Evaluate 라이브러리
__4.2.1 Evaluate 평가
__4.2.2 커스텀 메트릭 만들기
__4.2.3 Trainer 적용

5 언어 모델 구조 및 학습

_5.1 트랜스포머 모델
_5.2 인코더 기반 모델
__5.2.1 기본 구조
__5.2.2 Sequence Classification
__5.2.3 Multiple Choice
__5.2.4 Token Classification
__5.2.5 Question Answering
_5.3 디코더 기반 모델
__5.3.1 기본 구조
__5.3.2 Causal LM
__5.3.3 Question Answering
__5.3.4 Sequence Classification
_5.4 인코더-디코더 기반 모델
__5.4.1 기본 구조
__5.4.2 Conditional Generation
__5.4.3 Sequence Classification
__5.4.4 Question Answering

6 모델 활용

_6.1 모델 미세조정
__6.1.1 인코더 - Sequence Classification
__6.1.2 디코더 - Causal LM
__6.1.3 인코더-디코더 - Conditional Generation
__6.1.4 언어 모델 문장 생성
_6.2 모델 서빙

7 모델 경량화

_7.1 모델 경량화 개요
_7.2 PEFT
_7.3 양자화
_7.4 QLoRA 미세조정

8 TRL

_8.1 TRL 라이브러리 개요
_8.2 RLHF
_8.3 보상 모델 트레이닝
_8.4 SFT
_8.5 PPO
_8.6 Best-of-N 샘플링
_8.7 DPO
_8.8 KTO
_8.9 CPO
_8.10 ORPO

저자 소개2

통계학을 전공하였으며 DB 관리 및 솔루션 개발 3년 9개월, 스타트업 자연어 처리(Natural Language Processing, NLP) 개발 2년 8개월 경력을 쌓은 후 현재는 국내 식품 관련 기업 풀무원의 Data&AI 팀에서 대규모 언어 모델(Large Language Model, LLM)을 활용한 HR 어시스턴트, AICC 콜봇 개발을 하고 있다. 최근에는 자연어 처리 관련 모델과 LLM에 관해 주로 공부 중이며 항상 아는 지식을 공유하고 모르는 지식은 배우려는 자세로 임하고 있다. 現) 풀무원 Data&AI 팀 NLP 개발. 前) AI 관련 스타트업 NLP 개
통계학을 전공하였으며 DB 관리 및 솔루션 개발 3년 9개월, 스타트업 자연어 처리(Natural Language Processing, NLP) 개발 2년 8개월 경력을 쌓은 후 현재는 국내 식품 관련 기업 풀무원의 Data&AI 팀에서 대규모 언어 모델(Large Language Model, LLM)을 활용한 HR 어시스턴트, AICC 콜봇 개발을 하고 있다. 최근에는 자연어 처리 관련 모델과 LLM에 관해 주로 공부 중이며 항상 아는 지식을 공유하고 모르는 지식은 배우려는 자세로 임하고 있다.
現) 풀무원 Data&AI 팀 NLP 개발.
前) AI 관련 스타트업 NLP 개발, 퓨쳐누리 DB 관리 및 솔루션 개발.
소프트웨어마이스터고등학교 소프트웨어개발과를 졸업했다. 2020년도에 디스코드 챗봇 개발 팀 ‘팀 크레센도’에서 활동하며 여러 챗봇 개발에 기여했고, 졸업 직후 취업해 5년 차 NLP 엔지니어로 재직 중이며 한국방송통신대학교 통계ㆍ데이터과학과 이수를 병행하고 있다. 현재는 sLM 사전학습, 프롬프트 엔지니어링 등의 자연어 처리 기술과 더불어 음성 인식 및 음성 합성에도 많은 관심을 가지고 공부하고 있다. 現) AI 관련 스타트업 NLP 개발. 前) 디스코드 챗봇 개발팀 ‘팀 크레센도’ 활동.

품목정보

발행일
2025년 01월 13일
쪽수, 무게, 크기
320쪽 | 188*245*30mm
ISBN13
9791165923150

출판사 리뷰

추론 속도를 높이고 성능을 발전시키는
허깅페이스 라이브러리 하드 트레이닝


1장에서는 허깅페이스 허브에 등록된 모델 및 데이터셋을 확인해보고 자연어 처리와 허깅페이스의 관계에 대해 알아봅니다.

2장에서는 허깅페이스를 하드 트레이닝해보기에 앞서 구글 코랩 환경을 구축하고 구글 드라이브를 마운트합니다.

3장에서는 Datasets 라이브러리와 Transformers 라이브러리를 활용하여 토크나이저 및 모델 준비, KLUE 데이터셋 전처리, 학습 파라미터 선정 및 학습 진행과 성능 평가를 실습해봅니다.

4장에서는 사전학습 단계부터 직접 진행해야 하는 경우를 대비하여 Tokenizers 라이브러리에 대해 살펴봅니다. 그리고 정확도, f1 스코어, 정밀도, 재현율을 기준으로 모델을 평가하는 Evaluate 라이브러리에 대해 알아봅니다.

5장에서는 트랜스포머 모델, 인코더 기반 모델, 디코더 기반 모델, 인코더-디코더 기반 모델의 기본 구조를 살펴보고 문장 분류, 다중 선택, 토큰 분류, 질의 응답, 조건부 생성, 인과적 언어 모델(Causal LM) 태스크의 코드와 결과를 확인해봅니다.

6장에서는 모델 구조별 대표 태스크에 대해 미세조정(파인튜닝, fine-tuning)을 진행합니다. 확률적 특징의 이해를 돕는 수식과 꼭 필요한 메서드의 파라미터까지 함께 살펴볼 수 있습니다.

7장에서는 PEFT, 양자화, QLoRA 미세조정과 같이 모델의 메모리 사용량은 줄이고 추론 속도는 높이는 경량화 기법에 대해 알아봅니다.

8장에서는 RLHF, SFT, PPO, DPO, KTO, CPO, ORPO, Best-of-N 샘플링, 보상 모델 트레이닝 등 정렬 조정에 해당하는 최신 방법론과 이를 강화학습을 위한 트랜스포머(TRL)를 통해 활용하는 방식에 대해 알아봅니다.

이 책이 필요한 독자

- 자연어 처리 분야에서의 인공지능에 대해 알고 싶은 분
- 언어 모델을 처음 접하는 대학생 또는 대학원생
- 허깅페이스 코드를 실습해보고 싶은 자연어 처리 초보자
- 언어 모델의 구조와 다양한 태스크를 샅샅이 살펴보고 싶은 분
- 허깅페이스에 대한 이해도는 있지만, 직접 부딪혀가며 코드로 기술을 레벨업하고 싶은 분
- 경량화 기법과 강화학습을 위한 트랜스포머에 대해 궁금한 분

리뷰/한줄평26

리뷰

9.8 리뷰 총점

한줄평

10.0 한줄평 총점
24,750
1 24,750