확장메뉴
주요메뉴


소득공제 PDF
카드뉴스 파트너샵보기 공유하기
eBook

친절한 딥러닝 수학

: 인공 신경망 이해를 위한 기초 수학

[ PDF ]
첫번째 리뷰어가 되어주세요 | 판매지수 174
정가
22,400
판매가
22,400(종이책 정가 대비 20% 할인)
YES포인트
구매 시 참고사항
{ Html.RenderPartial("Sections/BaseInfoSection/DeliveryInfo", Model); }
한 눈에 보는 YES24 단독 선출간
매월 1~7일 디지털머니 충전 시 보너스머니 2배 적립
★90일 대여점★ 이렇게 싸도 대여?
[READ NOW] 2022년 4월호
eBook 전종 10%할인+5%적립 무한발급 슈퍼쿠폰
6월 전사
6월 쇼핑혜택
1 2 3 4 5

품목정보

품목정보
출간일 2021년 02월 26일
이용안내 ?
  •  배송 없이 구매 후 바로 읽기
  •  이용기간 제한없음
  •  TTS 불가능
  •  저작권 보호를 위해 인쇄 기능 제공 안함
지원기기 크레마, PC(윈도우), 아이폰, 아이패드, 안드로이드폰, 안드로이드패드, 전자책단말기(일부 기기 사용 불가), PC(Mac)
파일/용량 PDF(DRM) | 13.42MB ?
글자 수/ 페이지 수 약 356쪽?
ISBN13 9791162247112

카드 뉴스로 보는 책

소개 책소개 보이기/감추기

고등학교 수학으로 이해하는 인공 신경망
수학 기초는 약하지만 일단 개발부터 하고 보는 그대에게


수학을 어려워하는 마음을 깊이 공감하고 가능한 한 이해하기 쉽게 풀어냈다. 다양한 그림과 수식으로 신경망의 개념과 원리부터 경사하강법, 오차역전파법까지 설명하며 등장인물의 대화 속에서 자연스럽게 익힐 수 있도록 배려했다. 차근차근 쌓은 이론을 바탕으로 신경망을 구현해 이미지 크기를 판정해보고 손글씨도 식별해볼 수 있다. 수학이 약해 딥러닝이 낯설게 느껴졌다면, 딥러닝 이해에 필요한 수학 기초를 탄탄히 다지고 싶다면 이 책이 아주 좋은 안내자가 되어줄 것이다.

목차 목차 보이기/감추기

CHAPTER 1 신경망을 시작하자
1.1 신경망에 대한 흥미
1.2 신경망의 위치
1.3 신경망에 대해
1.4 신경망으로 할 수 있는 것
1.5 수학과 프로그래밍
COLUMN 신경망의 역사

CHAPTER 2 순전파를 배우자
2.1 신경망의 시작은 퍼셉트론
2.2 퍼셉트론
2.3 퍼셉트론과 편향
2.4 퍼셉트론으로 이미지의 긴 변 판정하기
2.5 퍼셉트론으로 정사각형 이미지 판정하기
2.6 퍼셉트론의 단점
2.7 다층 퍼셉트론
2.8 신경망으로 정사각형 이미지 판정하기
2.9 신경망의 가중치
2.10 활성화 함수
2.11 신경망의 실체
2.12 순전파
2.13 신경망의 일반화
COLUMN 활성화 함수란?

CHAPTER 3 역전파를 배우자
3.1 신경망의 가중치와 편향
3.2 인간의 한계
3.3 오차
3.4 목적 함수
3.5 경사하강법
3.6 작은 아이디어 델타
3.7 델타 계산
3.8 백프로퍼게이션
COLUMN 기울기 소실이란?

CHAPTER 4 합성곱 신경망을 배우자
4.1 이미지 처리에 강한 합성곱 신경망
4.2 합성곱 필터
4.3 특징맵
4.4 활성화 함수
4.5 풀링
4.6 합성곱층
4.7 합성곱층의 순전파
4.8 전결합층의 순전파
4.9 역전파
COLUMN 교차 엔트로피란?

CHAPTER 5 신경망을 구현하자
5.1 파이썬으로 구현하자
5.2 가로세로비 판정 신경망
5.3 손글씨 숫자 이미지 식별 합성곱 신경망
COLUMN 뒷이야기

APPENDIX A 수학 기초
A.1 시그마
A.2 미분
A.3 편미분
A.4 합성 함수
A.5 벡터와 행렬
A.6 지수와 로그

APPENDIX B 파이썬과 넘파이 기초
B.1 파이썬 환경 설정
B.2 파이썬 기초
B.3 넘파이 기초

저자 소개 (2명)

출판사 리뷰 출판사 리뷰 보이기/감추기

코드로만 구현하는 딥러닝은 가라!
신경망 이해를 위한 친절한 기초 수학


딥러닝과 수학은 떼어놓고 생각할 수 없습니다. 딥러닝은 인공 신경망이라는 오래된 수학 모델과 통계 기법을 기반으로 합니다. 최근에는 신경망과 관련된 프레임워크, 라이브러리, 데이터셋, 문서 등이 풍부해 원하기만 하면 간단히 경험해볼 수 있습니다. 복잡한 부분은 잘 감춰져 있어 신경망 안에서 실제로 어떤 일이 일어나는지 몰라도 간단하게 구현이 가능하지만 그 아래에서 어떠한 일이 일어나는지 알면 더 좋을 것입니다. 기초를 안다면 응용할 수 있고 나아가 활용법을 쉽게 떠올릴 수 있기 때문입니다.

“수학 때문에 딥러닝이 어렵다.”
“딥러닝 구현은 할 수 있지만 수학 원리를 모르겠다.”

수학을 어려워하는 마음을 충분히 공감하고 가능한 한 이해하기 쉽게 설명했습니다. 신경망의 개념, 원리부터 경사하강법, 오차역전파법까지 등장인물의 대화 속에서 자연스럽게 익힐 수 있도록 배려했습니다. 차근차근 쌓은 이론을 바탕으로 신경망을 구현해 이미지 크기를 판정해보고 손글씨도 식별해보세요. 수학이 약해 딥러닝이 낯설게 느껴졌다면, 딥러닝 이해에 필요한 수학 기초를 탄탄히 다지고 싶다면 이 책이 아주 좋은 안내자가 되어줄 것입니다.

★각 장의 개요
1장 신경망을 시작하자
신경망 개념을 알아보고 머신러닝 알고리즘과 어떤 차이가 있는지, 무엇을 할 수 있는지 살펴봅니다.

2장 순전파를 배우자
신경망을 구성하는 단순한 알고리즘인 퍼셉트론 안에서 계산이 어떻게 진행되는지 설명합니다.

3장 역전파를 배우자
신경망에서 적절한 가중치와 편향을 어떻게 계산해서 구하는지 설명합니다.

4장 합성곱 신경망을 배우자
합성곱 신경망을 이용한 이미지 처리 방법을 공부합니다.

5장 신경망을 구현하자
2, 3, 4장에서 배운 신경망 계산 방법을 파이썬으로 구현합니다. 이미지 크기를 판정해보고 합성곱 신경망을 이용해 손글씨 인식을 구현해봅니다.

★주요 내용
● 신경망 개념과 구조
● 신경망이 문제를 해결하는 원리
● 확률, 미분, 선형대수, 함수, 벡터
● 퍼셉트론으로 이미지 판별하기
● 신경망의 가중치와 편향
● 최적화 문제와 목적 함수, 교차 엔트로피
● 순전파, 역전파, 오차역전파법, 경사하강법
● 합성곱 필터, 특징맵, ReLU, 풀링

뒤로 앞으로 맨위로 aniAlarm