1장, ‘Pandas와 데이터 분석’에서는 Pandas의 주요 특징을 소개한다. 1장의 목적은 통계와 데이터 과학의 맥락에서 Pandas의 역할을 제시하는 것이다. 즉, 데이터 과학과 관련한 여러 개념을 알아보고 이를 Pandas가 어떻게 지원하는지 설명한다. 이로써 데이터 과학과 데이터 과학 프로세스와 관련한 이후의 각 장을 공부할 준비를 갖춘다.
2장, ‘Pandas의 설치와 가동’에서는 Pandas를 다운로드해 설치하는 방법과 몇 가지 기본 개념을 알아본다. 또한 iPython과 주피터 노트북(Jupyter Notebook)을 사용해 실습을 진행하는 모습을 보여준다.
3장, ‘Series로 단변량 데이터 표현’에서는 인덱스를 갖는 1차원의 데이터 표현 방법인 Pandas의 Series로 작업을 시작한다. Series 객체를 만드는 방법과 그 안의 데이터를 조작하는 방법을 공부할 것이며, 추가로 인덱싱, 데이터 정렬, 슬라이싱 등에 대해 알아본다.
4장, ‘DataFrame으로 다변량 데이터 표현’에서는 인덱스를 갖는 2차원의 데이터 표현 방법인 Pandas의 DataFrame에 대해 알아본다. DataFrame 객체를 만드는 방법과 정적 데이터셋의 사용 방법, 특정 칼럼이나 로우를 선택하는 방법 등을 배운다.
5장, ‘DataFrame 구조 다루기’에서는 4장에서 한 걸음 더 나아가 DataFrame으로 좀 복잡한 작업을 수행해본다. 구체적으로는 칼럼이나 로우를 추가, 교체, 삭제해보며, DataFrame 안의 데이터를 조작해본다.
6장, ‘데이터 인덱싱’에서는 Pandas의 인덱스 활용 방법을 자세히 알아본다. 특히 각 인덱스의 유형과 설정, 계층형 인덱스를 다루는 방법을 배운다.
7장, ‘범주형 데이터’에서는 Categorical을 사용해 Pandas의 범주를 다루는 방법을 알아본다.
8장, ‘수치 해석과 통계 기법’에서는 기본적인 산술 연산은 물론 기술 통계, 이산화, 롤링 윈도우, 무작위 표집 등 다양한 통계 작업을 수행해본다.
9장, ‘데이터 접근’에서는 외부로부터 데이터를 로딩해 Series나 DataFrame으로 저장하는 방법을 배운다. 또한 파일, HTTP 서버, 데이터베이스, 웹 서비스 등 다양한 장소의 데이터에 접근하는 방법을 알아본다. CSV, HTML, JSON, HDF5 형식의 데이터를 처리하는 방법도 배운다.
10장, ‘데이터 정돈’에서는 Pandas가 제공하는 다양한 도구를 사용해 지저분하거나 누락된 데이터를 분석에 유용한 형태로 관리하는 방법을 공부한다.
11장, ‘데이터의 조합, 연관, 재형성’에서는 복수의 Pandas 객체로부터 데이터를 접합하거나 병합하는 다양한 기법을 배운다.
12장, ‘데이터 집계’에서는 데이터의 그룹화와 집계 분석에 대해 알아본다. Pandas에서는 이를 분할-적용-재조합 패턴이라고 하는데, 이 패턴을 사용해 여러 방법으로 데이터 그룹화를 수행해보고 집계 함수를 적용해 데이터를 처리해본다.
13장, ‘시계열 모델링’에서는 시계열 데이터에 관해 알아본다. Pandas가 제공하는 방대한 기능을 사용해 시계열 데이터를 다루고 분석하는 방법을 공부한다.
14장, ‘시각화’에서는 matplotlib을 중심으로 Pandas 데이터를 시각화하는 방법을 알아본다. 막대그래프, 히스토그램, 박스-수염 그래프, 영역 그래프, 산점도, 커널 밀도 추정 차트, 히트맵 등 일반적인 여러 차트를 통해 금융 데이터를 표현하는 방법을 알아본다.
15장, ‘과거 주가 분석’에서는 기본적인 금융 분석 기법을 알아본다. 구글 파이낸스(Google Finance)로부터 데이터를 가져와 수익률, 이동 평균, 변동성 등 여러 주제를 다루며, 그런 금융 개념에 시각화를 적용하는 방법도 알아본다.