“그래프 알고리즘으로 패턴과 구조를 검출해 연결된 데이터를 살펴볼 수 있는 실용적이고 유익한 가이드다. 그래프 데이터베이스 작업 개발자가 반드시 읽어야 한다.”
- 루앤 미스퀴타 (Luanne Misquitta, GraphAware 엔지니어링 부사장)
마케팅 속성 분석, 자금 세탁 방지(AML, Anti-Money Laundering) 분석, 고객 여정 모델링, 안전사고 원인 분석, 문헌 기반 발견, 사기 네트워크 감지, 인터넷 검색 노드 분석, 지도 애플리케이션 생성, 질병 클러스터 분석에서 공통점은 그래프를 사용한다는 것이다. 위에 나열된 모든 예에는 직접/간접(전이) 관계를 포함해 엔티티와 엔티티 간의 관계가 포함된다. 엔티티는 그래프의 노드며 사람, 이벤트, 개체, 개념, 장소가 될 수 있다. 노드 간의 관계는 그래프의 에지(edge)가 된다.
그래프 알고리즘과 그래프 데이터베이스를 그토록 흥미롭고 강력하게 만드는 것은 A가 B와 관련된 두 개체 간에 단순한 관계만 있기 때문은 아니다. 결국 데이터베이스의 표준 관계형 모델은 수십 년 전에 엔티티 관계 다이어그램(ERD)에서 이러한 타입의 관계를 인스턴스화했다. 그래프에서 중요한 것은 방향 관계와 전이 관계다. 방향 관계에서 A는 B를 유발할 수 있지만 그 반대는 안 된다. 전이 관계에서 A는 B와 직접 관련되고 B는 C와 직접 관련되며 A는 C와 직접적으로는 관련되지 않았지만 결과적으로 보면 A는 C와 전이적으로 관련된다.
이러한 전이 관계(특히 관계와 네트워크 패턴이 가능한 한 많고 엔티티 간 일정한 분리 정도를 가지면서 엔티티들이 많고 다양할 때가 해당됨)를 통해 그래프 모델은 연결이 끊어지거나 관련이 없는 것처럼 보일 수 있고 관계형 데이터베이스에 의해 감지되지 않는 엔티티 간의 관계가 존재할 수 있다. 따라서 그래프 모델은 많은 네트워크 분석 사용 사례에서 생산적이며 효과적으로 적용할 수 있다.
인터넷 검색에서 주요 검색 엔진은 하이퍼링크 네트워크(그래프 기반) 알고리즘을 사용해 주어진 검색 단어 집합에 대해 전체 인터넷에서 신뢰할 수 있는 중앙 노드를 찾는다. 네트워크의 권위 있는 노드는 다른 많은 노드가 가리키는 노드이기 때문에 이 경우 에지의 방향성은 매우 중요한 역할을 한다.
그래프 알고리즘을 통한 모든 네트워크 분석 예를 사용해 앞서 언급한 다른 사용 사례에서도 유사한 그래프 작성 능력을 설명할 수 있다. 각 사례는 엔티티(사람, 개체, 이벤트, 행동, 개념, 장소)와 그 관계(접촉점, 인과(casual) 관계, 단순(simple) 연결 모두)와 깊이 관련된다.
그래프가 가진 힘을 고려할 때 실제 사용 사례에서 활용될 수 있는 그래프 모델의 가장 강력한 노드는 ‘콘텍스트(context)’일 수 있다는 점을 염두에 둬야 한다. 콘텍스트에는 시간, 위치, 관련 이벤트, 주변 엔티티 등이 포함될 수 있다. 콘텍스트를 그래프(노드 및 에지)에 통합하면 인상적인 예측(predictive) 분석과 규범적(prescriptive) 분석 기능을 얻을 수 있다.
마크 니덤(Mark Needham)과 에이미 호들러(Amy E. Hodler)의 이 책은 알고리즘, 개념, 알고리즘의 실제 머신러닝 애플리케이션을 포함해 이러한 중요한 타입의 그래프 분석에 대한 지식과 기능을 확장하는 것을 목표로 한다. 기본 개념에서 기본 알고리즘, 처리 플랫폼, 실제 사용 사례에 이르기까지 멋진 그래프 세계에 대한 유익한 가이드다.
- 커크 본 (부즈 앨런 해밀턴의 수석 데이터 과학자 및 수석 고문)