이미지 검색을 사용해 보세요
검색창 이전화면 이전화면
최근 검색어
인기 검색어

소득공제
케라스로 구현하는 고급 딥러닝 알고리즘
딥러닝 기법, 오토인코더, GAN, 변분 오토인코더, 심층강화학습, 정책 경사 기법 적용하기
가격
28,000
10 25,200
YES포인트?
1,400원 (5%)
5만원 이상 구매 시 2천원 추가 적립
결제혜택
카드/간편결제 혜택을 확인하세요

이미 소장하고 있다면 판매해 보세요.

  •  국내배송만 가능
  •  최저가 보상
  •  문화비소득공제 신청가능

위키북스- 데이터 사이언스 시리즈

이 상품의 시리즈 알림신청

책소개

목차

■ 01장: 케라스를 활용한 고급 딥러닝 소개

왜 케라스가 딥러닝 라이브러리로 완벽한가?
__케라스와 텐서플로 설치하기
핵심 딥러닝 모델 구현하기 - MLP, CNN, RNN
__MLP, CNN, RNN의 차이점
다층 퍼셉트론(MLP)
__MNIST 데이터세트
__MNIST 숫자 분류 모델
__정규화
__출력 활성화 함수와 손실 함수
__최적화
__성능 평가
__모델 요약
합성곱 신경망(CNN)
__합성곱
__풀링 연산
__성능 평가 및 모델 요약
순환 신경망(RNN)
결론
참고 문헌

■ 02장: 심층 신경망

함수형 API
__입력이 두 개, 출력이 하나인 모델 생성하기
심층 잔차 신경망(ResNet)
ResNet v2
밀집 연결 합성곱 네트워크(DenseNet)
__CIFAR10을 위한 100계층 DenseNet-BC 구성하기
결론
참고 문헌

■ 03장: 오토인코더

오토인코더의 원리
케라스로 오토인코더 구성하기
잡음 제거 오토인코더(DAE)
자동 채색 오토인코더
결론
참고 문헌

■ 04장: 생성적 적대 신경망(GAN)

GAN의 개요
GAN 원리
케라스로 구현한 GAN
조건부 GAN
결론
참고문헌

■ 05장: 개선된 GAN 모델

베셔슈타인 GAN
거리 함수
GAN의 거리 함수
__베셔슈타인 손실 함수 사용하기
__케라스에서 WGAN 구현하기
최소 제곱 GAN(LSGAN)
ACGAN
결론
참고 문헌

■ 06장: 분해된 표현 GAN

분해된 표현
InfoGAN
케라스에서 InfoGAN 구현
InfoGAN의 생성기 출력
StackedGAN
케라스에서 StackedGAN을 구현하기
StackedGAN의 생성기 출력
결론
참고 문헌

■ 07장: 교차 도메인 GAN

CycleGAN 원리
CycleGAN 모델
케라스에서 CycleGAN 구현하기
CycleGAN의 생성기 출력
MNIST 및 SVHN 데이터세트에 CycleGAN 적용하기
결론
참고 문헌

■ 08장: 변분 오토인코더

VAE 원리
__변분 추론
__핵심 방정식
__최적화
__매개변수 조정 기법
__디코더 테스트
__케라스로 VAE 구현하기
__VAE를 위해 CNN 사용하기
조건부 VAE(CVAE)
b-VAE: 분해된 잠재 표현을 사용한 VAE
결론
참고 문헌

■ 09장: 심층강화학습

강화학습의 원리
__Q 값
__Q-러닝 예제
__파이썬에서의 Q-러닝
__비결정론적 환경
__시간차 학습
__OpenAI gym에서의 Q-러닝
__심층 Q-네트워크(DQN)
__알고리즘 9.6.1 DQN 알고리즘:
__케라스에서의 DQN
__더블 Q-러닝(DDQN)
결론
참고문헌

■ 10장: 정책 경사 기법

정책 경사 정리
몬테 카를로 정책 경사(REINFORCE) 기법
__기준선을 적용한 REINFORCE
__액터-크리틱 기법
__어드밴티지 액터-크리틱(A2C) 기법
__케라스로 정책 경사 기법 구현하기
__정책 경사 기법의 성능 평가
결론
참고 문헌

저자 소개2

로웰 아티엔자

관심작가 알림신청

Rowel Atienza

로웰 아티엔자는 필리핀 딜리만의 필리핀대학교 전기전자공학부 부교수다. Dado and Maria Banatato 연구소 인공지능 분야의 교수장이기도 하다. 로웰은 필리핀대학교를 졸업한 후로 지능형 로봇에 매료됐다. AI가 탑재된 네 발 달린 로봇을 만들어 싱가포르 국립대학교에서 공학 석사 학위를 받았다. 오스트레일리아 국립대학교에서 인간과 로봇의 상호작용을 위한 시선 위치 추적 기술을 연구해 박사 학위를 마쳤다. 현재는 AI와 컴퓨터 비전을 연구하고 있다. 그의 꿈은 지각하고 이해하고 추론할 수 있는 유용한 기계를 만드는 것이다. 필리핀 과학기술부(DOST), 필리핀 삼성 연구소
로웰 아티엔자는 필리핀 딜리만의 필리핀대학교 전기전자공학부 부교수다. Dado and Maria Banatato 연구소 인공지능 분야의 교수장이기도 하다. 로웰은 필리핀대학교를 졸업한 후로 지능형 로봇에 매료됐다. AI가 탑재된 네 발 달린 로봇을 만들어 싱가포르 국립대학교에서 공학 석사 학위를 받았다. 오스트레일리아 국립대학교에서 인간과 로봇의 상호작용을 위한 시선 위치 추적 기술을 연구해 박사 학위를 마쳤다. 현재는 AI와 컴퓨터 비전을 연구하고 있다. 그의 꿈은 지각하고 이해하고 추론할 수 있는 유용한 기계를 만드는 것이다. 필리핀 과학기술부(DOST), 필리핀 삼성 연구소, 고등 교육 위원회 산하 필리핀-캘리포니아 고등 연구소(CHED-PCARI)로부터 지원을 받아 그 꿈을 이루려고 노력 중이다.
현재 기업 빅데이터 전략팀에서 근무하고 있다. 옮긴 책으로는 『케라스로 구현하는 고급 딥러닝 알고리즘』 『실전! Core ML을 활용한 머신러닝 iOS 앱 개발』 『실전활용! 텐서플로 딥러닝 프로젝트』 『마이크로소프트 봇 프레임워크 프로그래밍』 『애자일 데이터 과학 2.0』 『구글 애널리틱스 완벽 가이드』 『파이썬 데이터 사이언스 핸드북』 『러닝 스칼라』가 있다.

김정인의 다른 상품

품목정보

발행일
2019년 09월 27일
쪽수, 무게, 크기
356쪽 | 188*240*20mm
ISBN13
9791158391713

출판사 리뷰

이 책에서 다루는 내용

· 인간과 비슷한 AI 성능을 내는 최첨단 기법
· 케라스를 사용해 고급 딥러닝 모델을 구현하는 방법
· 고급 딥러닝 기법의 구성요소 - MLP, CNN, RNN
· 심층 신경망 - ResNet, DenseNet
· 오토인코더와 변분 오토인코더(VAE)
· 생성적 적대 신경망(GAN)과 창의적인 AI 기법
· 분해된 표현의 GAN과 교차 도메인 GAN
· 심층강화학습 기법과 그 구현
· OpenAI Gym을 사용해 산업 표준 애플리케이션을 구성하는 방법
· 심층 Q-러닝과 정책 경사 기법

리뷰/한줄평1

리뷰

첫번째 리뷰어가 되어주세요.

한줄평

10.0 한줄평 총점
25,200
1 25,200