이미지 검색을 사용해 보세요
검색창 이전화면 이전화면
최근 검색어
인기 검색어

소득공제 PDF
eBook 머신러닝을 위한 파이썬 한 조각
파이썬으로 이해하는 인공지능의 시작 스마트한 PDF 필기 기능을 사용해 보세요!
가격
19,200
19,200
YES포인트?
960원 (5%)
5만원 이상 구매 시 2천원 추가 적립
결제혜택
카드/간편결제 혜택을 확인하세요
PDF 안내

이 상품은 구매 후 지원 기기에서 예스24 eBook앱 설치 후 바로 이용 가능한 상품입니다.

예스24만의 독보적인 PDF 필기 기능을 경험해 보세요!

이 상품의 태그

소개

목차

서문

1. 머신러닝 개요
1.1 4차 산업혁명
1.2 인공지능과 머신러닝
1.3 머신러닝에서의 회귀와 분류
1,4 머신러닝 구현 방법1.5 정리

2. 파이썬 (Python)
2.1 파이썬 설치 및 jupyter notebook 실행
2.2 파이썬 데이터타입(DataType)
2.3 파이썬 조건문 if
2.4 파이썬 for 반복문
2.5 List Comprehension
2.6 파이썬 함수 (Function)
2.7 파이썬 클래스 (class)2.8 정리

3. 넘파이 (numpy)
3.1 넘파이 라이브러리 가져오기(import)
3.2 넘파이와 리스트(numpy vs list)
3.3 넘파이 벡터(Vector, 1차원 배열) 생성
3.4 넘파이 행렬(Matrix, 2차원 배열) 생성
3.5 넘파이 산술연산
3.6 넘파이 형 변환(reshape)
3.7 넘파이 브로드캐스트(Broadcast)
3.8 넘파이 전치행렬(Transpose)
3.9 넘파이 행렬 곱(Matrix Multiplication)
3.10 행렬 원소 접근(Indexing, Slicing)
3.11 넘파이 이터레이터(Iterator)
3.12 넘파이 유용한 함수(Useful Function)
3.13 정리

4. 미분 (Derivative)
4.1 미분 개념과 인사이트(Insight)
4.2 편미분(Partial Derivative)
4.3 체인 룰(Chain Rule)
4.4 수치 미분(Numerical Derivative)
4.5 정리

5. 선형 회귀와 분류(Linear Regression and Classification)
5.1 인공지능 머신러닝 딥러닝 리뷰
5.2 선형 회귀(Linear Regression)
5.3 분류(Classification)
5.4 정리

6. XOR 문제(XOR Problem)
6.1 논리게이트 AND, OR, NAND, XOR
6.2 논리게이트(Logic Gate) 클래스 구현
6.3 논리 게이트 검증
6.4 XOR 문제 해결 방법
6.5 정리

7. 딥러닝(Deep Learning)
7.1 XOR 문제 리뷰
7.2 신경망(Neural Network) 개념
7.3 신경망과 인공 신경망
7.4 딥러닝(Deep Learning) 기초
7.5 딥러닝으로 XOR 문제 해결
7.6 정리

8. MNIST(필기체 손글씨)
8.1 MNIST(필기체 손글씨)
8.2 MNIST 인식을 위한 딥러닝 아키텍처
8.3 MNIST_Test 클래스 구현
8.4 MNIST 인식 정확도 검증
8.5 정리

9. 오차역전파(Back Propagation)
9.1 수치 미분의 문제점
9.2 오차역전파 개념 및 원리
9.3 각 층에서의 선형회귀 값(z), 출력 값(a), 오차(E)
9.4 시그모이드(sigmoid) 함수 미분
9.5 출력층 오차역전파 공식
9.6 은닉층 오차역전파 공식
9.7 오차역전파를 이용한 MNIST 검증
9.8 정리

10. 텐서플로(TensorFlow) 기초
10.1 텐서플로 설치
10.2 텐서플로 텐서(Tensor)
10.3 텐서플로 노드(Node), 엣지(Edge)
10.4 텐서플로를 이용한 MNIST 검증
10.5 정리

11. 합성곱 신경망 CNN(Convolutional Neural Network)
11.1 CNN 아키텍처
11.2 콘볼루션층(Convolutional Layer) 개요
11.3 패딩(padding)
11.4 콘볼루션 연산을 통한 출력 데이터 크기
11.5 CNN 기반의 MNIST 검증
11.6 정리

12. 순환 신경망 RNN(Recurrent Neural Network)
12.1 RNN 아키텍처
12.2 순서가 있는 데이터
12.3 RNN 동작원리(정성적 분석)
12.4 RNN 동작원리(정량적 분석)
12.5 RNN 예제12.6 정리

찾아보기

저자 소개1

KAIST 전기 및 전자공학과 학부와 대학원을 졸업하고 삼성전자, Google, NIPA에서 근무하며 삼성전자 개발공로상과 지식경제부 장관 표창을 수상하였습니다. 현재는 숭실대학교 교수로 재직 중이며 머신러닝, 딥러닝과 강화학습 분야의 강의와 연구에 매진하고 있습니다. 이러한 내용들을 누구나 쉽게 접할 수 있게 YouTube 채널(https://www.youtube.com/NeoWizard)을 운영하며 많은 분들과 소통하고 있습니다.

품목정보

발행일
2020년 02월 21일
이용안내
  •  배송 없이 구매 후 바로 읽기
  •  이용기간 제한없음
  •  TTS 불가능
  •  저작권 보호를 위해 인쇄 기능 제공 안함
지원기기
크레마, PC(윈도우 - 4K 모니터 미지원), 아이폰, 아이패드, 안드로이드폰, 안드로이드패드, 전자책단말기(저사양 기기 사용 불가), PC(Mac)
파일/용량
PDF(DRM) | 11.81MB ?
ISBN13
9791190014779

출판사 리뷰

머신러닝만큼 IT 업계에서 꾸준히 언급되는 것이 따로 있을까? 우리는 여러 매체에서 머신러닝에 대해 귀가 닳도록 들어왔다. 그럼에도 불구하고 머신러닝이 정확히 무엇인지 물어보면, 구체적으로 대답하거나 완벽하게 이해했다고는 말하기 어려운 것이 현실이다.

이 책은 머신러닝과 딥러닝에 필요한 기초적인 내용부터 실제 딥러닝 모델 구조의 설계 과정에 대해 설명한다. 기초적인 개념부터 클래스 구현에 필요한 함수식, 그리고 가장 널리 쓰이고 있는 모델인 CNN, RNN까지 아울러 설명한다. 책을 다 읽은 뒤에는 기초를 잘 다진 인공지능 분야의 고급 개발자가 될 수 있을 것이다.

리뷰/한줄평10

리뷰

9.8 리뷰 총점

한줄평

10.0 한줄평 총점