확장메뉴
주요메뉴


소득공제 PDF
미리보기 파트너샵보기 공유하기
eBook

미술관에 GAN 딥러닝 실전 프로젝트

: GAN으로 쓰기, 그리기, 게임하기, 작곡하기

[ PDF ]
첫번째 리뷰어가 되어주세요 | 판매지수 282
정가
25,600
판매가
25,600(종이책 정가 대비 20% 할인)
구매 시 참고사항
{ Html.RenderPartial("Sections/BaseInfoSection/DeliveryInfo", Model); }
한 눈에 보는 YES24 단독 선출간
매월 1~7일 디지털머니 충전 시 보너스머니 2배 적립
★90일 대여점★ 이렇게 싸도 대여?
[READ NOW] 2022년 9월호
eBook 전종 10%할인+5%적립 무한발급 슈퍼쿠폰
쇼핑혜택
현대카드
1 2 3 4 5

품목정보

품목정보
출간일 2019년 11월 30일
이용안내 ?
  •  배송 없이 구매 후 바로 읽기
  •  이용기간 제한없음
  •  TTS 불가능
  •  저작권 보호를 위해 인쇄 기능 제공 안함
지원기기 크레마, PC(윈도우), 아이폰, 아이패드, 안드로이드폰, 안드로이드패드, 전자책단말기(일부 기기 사용 불가), PC(Mac)
파일/용량 PDF(DRM) | 46.56MB ?
글자 수/ 페이지 수 약 357쪽?
ISBN13 9791162248270
KC인증

이 상품의 태그

소개 책소개 보이기/감추기

창조에 다가서는 GAN의 4가지 생성 프로젝트

이 책은 케라스를 사용한 딥러닝 기초부터 AI 분야 최신 알고리즘까지 설명한다. 기계 스스로 그림을 그리고, 글을 쓰고, 음악을 작곡하고, 게임을 하는 딥러닝 생성 모델을 재현하는 과정에서 독자는 변이형 오토인코더(VAE), 생성적 적대 신경망(GAN), 인코더-디코더 모델, 월드 모델 등을 학습할 수 있다. 이 책에서 제시한 팁과 가이드로 모델을 효율적으로 학습시키고 창의적인 생성 모델을 만들 수 있다.

목차 목차 보이기/감추기

CHAPTER 1 생성 모델링

1.1 생성 모델링이란?
1.2 확률적 생성 모델
1.3 생성 모델의 난관
1.4 환경 설정
1.5 요약

CHAPTER 2 딥러닝

2.1 정형 데이터와 비정형 데이터
2.2 심층 신경망
2.3 첫 번째 심층 신경망
2.4 모델 성능 향상
2.5 요약

CHAPTER 3 VAE - 변이형 오토인코더

3.1 미술 전시회
3.2 AE - 오토인코더
3.3 변경된 미술 전시회
3.4 VAE 만들기
3.5 VAE를 사용하여 얼굴 이미지 생성
3.6 요약

CHAPTER 4 GAN - 생성적 적대 신경망

4.1 애니멀간
4.2 GAN 소개
4.3 첫 번째 GAN
4.4 GAN의 도전 과제
4.5 WGAN - 와서스테인 GAN
4.6 WGAN-GP
4.7 요약

CHAPTER 5 그리기

5.1 사과와 오렌지
5.2 CycleGAN 소개
5.3 첫 번째 CycleGAN
5.4 CycleGAN으로 모네 그림 그리기
5.5 뉴럴 스타일 트랜스퍼
5.6 요약

CHAPTER 6 쓰기

6.1 고약한 범법자를 위한 문학 클럽
6.2 LSTM 네트워크 소개
6.3 첫 번째 LSTM 네트워크
6.4 새로운 텍스트 생성
6.5 RNN 확장
6.6 인코더-디코더 모델
6.7 질문-대답 생성기
6.8 요약

CHAPTER 7 작곡하기

7.1 준비 사항
7.2 첫 번째 음악 생성 RNN
7.3 MuseGAN 소개
7.4 첫 번째 MuseGAN
7.5 MuseGAN 생성자
7.6 MuseGAN 비평자
7.7 MuseGAN 분석
7.8 요약

CHAPTER 8 게임하기

8.1 강화학습
8.2 월드 모델 구조
8.3 환경 설정
8.4 훈련 과정
8.5 랜덤한 롤아웃 데이터 수집
8.6 VAE 훈련
8.7 RNN 훈련 데이터 수집
8.8 MDN-RNN 훈련
8.9 컨트롤러 훈련
8.10 꿈속에서 훈련하기
8.11 요약

CHAPTER 9 생성 모델링의 미래

9.1 최근 5년간의 발전
9.2 트랜스포머
9.3 이미지 생성 분야의 발전
9.4 생성 모델링의 적용 분야

CHAPTER 10 결론

저자 소개 (2명)

출판사 리뷰 출판사 리뷰 보이기/감추기

만들 수 없다면 이해하지 못한 것이다. (리처드 파인만)

최근 생성 모델링 분야에서 가장 널리 사용하고 창조적인 작업에서 인상적인 진전을 이루어낸 주요 기술을 다룹니다. 핵심적인 생성 모델링 이론을 살펴보고 논문에 소개된 일부 주요 모델에 예제를 만들고 단계별로 코드를 살펴봅니다.

[주요 내용]

· 변이형 오토인코더가 사진 속 얼굴 표정을 어떻게 바꾸는지 알아보기
· 스타일을 변경하는 CycleGAN과 음악을 생성하는 MuseGAN을 사용한 GAN 예제
· 텍스트를 생성하는 순환 생성 모델을 만들고 어텐션을 사용하여 모델 성능 향상시키기
· 생성 모델이 어떻게 강화학습 환경에서 작업을 완수하려는 에이전트를 돕는지 이해하기
· 트랜스포머(BERT, GPT-2), ProGAN, StyleGAN 같은 이미지 생성 모델의 구조 살펴보기

[이 책의 구성]

- 1장 생성 모델링
기본적인 확률 모델을 사용한 첫 번째 예제를 살펴보고 생성 모델링 작업의 복잡도가 증가할 때 딥러닝이 필요한 이유를 분석해봅니다.

- 2장 딥러닝
복잡한 생성 모델을 만들기 위해 필요한 딥러닝 도구와 기술을 소개합니다. 딥러닝 분야의 이론적 배경보다는 실용적인 가이드를 제공합니다.

- 3장 변이형 오토인코더(VAE)
생성 딥러닝 모델인 변이형 오토인코더를 살펴봅니다. 실제와 같은 얼굴을 생성할 뿐만 아니라 기존 이미지를 변경합니다.

- 4장 생성적 적대 신경망(GAN)
생성적 적대 신경망을 살펴봅니다. 모델을 세부 튜닝하는 방법과 생성 모델링 영역을 지속적으로 확장하는 새로운 기법을 알아봅니다.

- 5장 그리기
GAN 구조를 사용하여 모델이 사진을 특정 스타일의 그림으로 (또는 그 반대로) 변환하는 CycleGAN을 배웁니다. 또한 그림의 스타일을 사진으로 전달하여 마치 동일한 화가가 그린 듯한 효과를 내는 뉴럴 스타일 트랜스퍼 기술도 살펴봅니다.

- 6장 쓰기
순차 데이터가 포함된 문제를 다루는 순환 신경망(RNN) 구조를 소개합니다. 또한 인코더-디코더 구조의 작동 원리를 알아보고 간단한 질문-대답 생성기를 만듭니다.

- 7장 작곡하기
텍스트 생성 문제에 사용한 여러 기술을 확장하고 음악 데이터를 적용한 딥러닝 구조인 MuseGAN을 살펴봅니다.

- 8장 게임하기
생성 모델을 강화학습 같은 머신러닝 도메인에 사용할 수 있는지 알아봅니다. 에이전트가 주어진 환경에서 생성 모델을 훈련하는 방법을 소개합니다.

- 9장 생성 모델링의 미래
생성 모델링 분야를 요약하고 이 책에서 소개한 기술을 정리합니다. 전망을 조망하고 오늘날 가능한 최고의 기술이 창의성을 바라보는 방식을 어떻게 바꾸는지 살펴봅니다.
뒤로 앞으로 맨위로 aniAlarm