이미지 검색을 사용해 보세요
검색창 이전화면 이전화면
최근 검색어
인기 검색어

소득공제 PDF
eBook 안녕, 트랜스포머
BERT에서 시작하는 자연어 처리 레시피 스마트한 PDF 필기 기능을 사용해 보세요!
이진기
에이콘출판사 2022.09.28.
가격
19,200
19,200
YES포인트?
960원 (5%)
5만원 이상 구매 시 2천원 추가 적립
결제혜택
카드/간편결제 혜택을 확인하세요
PDF 안내

이 상품은 구매 후 지원 기기에서 예스24 eBook앱 설치 후 바로 이용 가능한 상품입니다.

예스24만의 독보적인 PDF 필기 기능을 경험해 보세요!

이 상품의 태그

  • eBook 밑바닥부터 시작하는 딥러닝 2
    밑바닥부터 시작하는 딥러닝 2
    23,200
    상품명 이동
  • eBook 쓸모 있는 AI 서비스 만들기
    쓸모 있는 AI 서비스 만들기
    21,600
    상품명 이동
  • eBook 개발자를 위한 머신러닝&딥러닝
    개발자를 위한 머신러닝&딥러닝
    27,200
    상품명 이동
  • eBook 트랜스포머를 활용한 자연어 처리
    트랜스포머를 활용한 자연어 처리
    31,200
    상품명 이동
  • eBook 자연어 처리를 위한 허깅페이스 트랜스포머 하드 트레이닝
    자연어 처리를 위한 허깅페이스 트랜스포머 하드 트레이닝
    22,000
    상품명 이동
  • eBook Must Have 텐초의 파이토치 딥러닝 특강
    Must Have 텐초의 파이토치 딥러닝 특강
    24,000
    상품명 이동
  • eBook 안녕, 트랜스포머
    안녕, 트랜스포머
    19,200
    상품명 이동
  • eBook 실무가 훤히 보이는 머신러닝 & 딥러닝
    실무가 훤히 보이는 머신러닝 & 딥러닝
    20,800
    상품명 이동
  • eBook 김기현의 자연어 처리 딥러닝 캠프 파이토치 편
    김기현의 자연어 처리 딥러닝 캠프 파이토치 편
    30,400
    상품명 이동

상세 이미지

소개

목차

1장 다음 단어는요? 언어 모델
__1.1. 언어 모델은 확률 게임
__1.2. N-gram 언어 모델
____1.2.1. 텍스트 전처리
____1.2.2. 제로 카운트 해결하기
____1.2.3. N-gram 모델 학습하기
____1.2.4. N-gram 언어 모델의 한계
__1.3. Word2Vec 기반의 언어 모델
__1.4. RNN 기반의 언어 모델
__1.4.1. RNN의 구조
__1.4.2. GRU 언어 모델 구현하기
__1.4.3. GRU 언어 모델로 문장 생성하기


2장 집중해 보자! 어텐션
__2.1. 하나의 벡터로 모든 정보를 담는 RNN
__2.2. 왜 어텐션(Attention)하지 않지?
__2.3. 어떻게 어텐션(Attention)하지?
____2.3.1. 묻고 참고하고 답하기
____2.3.2. 어텐션 계산해 보기
____2.3.3. 어텐션 구현하기
____2.3.4 모델링 학습하기


3장 안녕, 트랜스포머
__3.1. 트랜스포머의 구조
__3.2. 트랜스포머 구현하기
____3.2.1. 인코더
__3.3. Why Transformer
__3.4. 트랜스포머 학습 결과
____3.4.1. Perplexity(PPL)
____3.4.2. BLEU 스코어


4장 중간부터 학습하자! 사전학습과 파인튜닝
__4.1. 사전학습과 Fine-Tuning
__4.2. BERT
____4.2.1. BERT의 모델 구조와 이해하기
____4.2.2. BERT 모델의 입력 이해하기
____4.2.3. 사전학습 이해하기
____4.2.4. Masked Language Model(MLM)
____4.2.5. Next Sentence Prediction(NSP)
____4.2.6. 사전학습을 위한 데이터셋 준비와 Self-supervised Learning
____4.2.7. 사전학습 파헤치기
____4.2.8. 사전학습 정리하기
____4.2.9. Fine-Tuning 이해하기
____4.2.10. 텍스트 분류 모델로 파인튜닝하기
____4.2.11. 질의응답 모델로 파인튜닝하기
__4.3. GPT
____4.3.1. GPT의 사전학습
____4.3.2. Masked Self-Attention
__4.4. RoBERTa
____4.4.1. 정적 또는 동적 마스킹 전략
____4.4.2. NSP 전략
____4.4.3. 배치 사이즈와 데이터셋 크기
__4.5. ALBERT
____4.5.1. Factorized Embedding Parameterization
____4.5.2. Cross-layer Parameter Sharing
____4.5.3. Sentence Order Prediction(SOP)
____4.5.4. ALBERT 정리
__4.6. ELECTRA
____4.6.1. 학습 구조
____4.6.2. RTD
__4.7. DistilBERT
____4.7.1. 지식 증류
____4.7.2. DistilBERT의 구조와 성능 비교
__4.8. BigBird
____4.8.1. 전체 문장에 대한 어텐션, 글로벌 어텐션
____4.8.2. 가까운 단어에만 집중하기, 로컬 어텐션
____4.8.3. 임의의 토큰에 대한 어텐션, 랜덤 어텐션
____4.8.4. 토큰 길이에 따른 연산량 비교
__4.9. 리포머
____4.9.1. 트랜스포머 구조의 문제점
____4.9.2. LSH 어텐션
____4.9.3. Reversible 트랜스포머
__4.10. GLUE 데이터셋
____4.10.1. CoLA
____4.10.2. SST-2 데이터셋
____4.10.3. MRPC
____4.10.4. QQP
____4.10.5. STS-B
____4.10.6. MNLI
____4.10.7. QNLI
____4.10.8. RTE
____4.10.9. WNLI
____4.10.10. GLUE 데이터셋의 평가 지표


5장 어떻게 배우지? 메타러닝
__5.1. 학습을 위한 학습, 메타러닝
__5.2. 메타러닝을 이용한 Amazon 리뷰 감정 분류 학습하기
____5.2.1. 데이터셋과 데이터로더 만들기
__5.3. GPT2에서의 메타러닝
____5.3.1. GPT2를 학습하기 위한 접근 방법
____5.3.2. GPT2의 학습 데이터셋과 멀티태스크
____5.3.3. GPT2 성능 평가 결과
____5.3.4. GP2를 통한 문장 생성
____5.3.5. GPT2를 이용한 퓨샷 러닝


부록. 양자화
__1.1. 양자화에 대한 수학적인 이해와 코드 구현
__1.2. 양자화된 행렬을 이용한 행렬 곱셈과 덧셈
__1.3. 동적 양자화와 정적 양자화
__1.4. BERT 양자화하기

저자 소개1

안랩의 보안 관제 엔지니어로 IT 업계에 발을 들였다. 그러던 중 2015년에 데이터 분석을 공부하기 위해 영국의 워릭대학교(The University of Warwick)로 석사 유학을 떠났다. 석사 취득 후에는 안랩에서 보안 관제를 위한 머신러닝/AI 서비스를 연구하고 개발했다. 현재는 포스코ICT의 AI기술그룹에서 컴퓨터 비전 프로젝트를 연구하고 있다.

품목정보

발행일
2022년 09월 28일
이용안내
  •  배송 없이 구매 후 바로 읽기
  •  이용기간 제한없음
  •  TTS 불가능
  •  저작권 보호를 위해 인쇄 기능 제공 안함
지원기기
크레마, PC(윈도우 - 4K 모니터 미지원), 아이폰, 아이패드, 안드로이드폰, 안드로이드패드, 전자책단말기(저사양 기기 사용 불가), PC(Mac)
파일/용량
PDF(DRM) | 7.97MB ?
글자 수/ 페이지 수
약 257쪽 ?
ISBN13
9791161756851

출판사 리뷰

자연어 처리를 위한 AI 모델의 핵심 기술과 활용법에 대해서 다룬다. N-gram으로 접근하는 전통적인 모델 방식의 한계를 설명하고, AI 모델이 그 문제를 어떻게 해결할 수 있는지 설명한다. 어텐션 네트워크의 배경과 핵심 원리를 자세하게 설명하고 있고, 이 구조를 통해서 트랜스포머나 BERT 등의 구조를 설명한다. 또한 자연어 처리에 있어서 메타학습 방법도 간략하게 소개한다

리뷰/한줄평0

리뷰

첫번째 리뷰어가 되어주세요.

한줄평

첫번째 한줄평을 남겨주세요.