이미지 검색을 사용해 보세요
검색창 이전화면 이전화면
최근 검색어
인기 검색어

소득공제
공학수학 에센스
마인숙박재균 감수
한빛아카데미 2023.10.30.
베스트
자연과학 계열 top100 5주
가격
34,000
34,000
YES포인트?
0원
5만원 이상 구매 시 2천원 추가 적립
결제혜택
카드/간편결제 혜택을 확인하세요

이미 소장하고 있다면 판매해 보세요.

  •  국내배송만 가능
  •  문화비소득공제 신청가능

상세 이미지

책소개

목차

PART 01 상미분방정식

Chapter 01 1계 미분방정식

1.1 미분방정식의 소개

1.2 변수분리형 미분방정식

1.3 완전 미분방정식

1.4 선형 미분방정식

연습문제

Chapter 02 1계 미분방정식의 활용

2.1 1계 선형모형

2.2 비선형모형

2.3 해의 존재성과 유일성

연습문제

Chapter 03 2계 선형 미분방정식

3.1 선형 미분방정식의 기본 이론

3.2 선형 미분방정식의 성질

3.3 상수계수를 갖는 제차 선형 미분방정식

3.4 미정계수법

3.5 매개변수 변환법

3.6 코시-오일러 방정식

연습문제

Chapter 04 2계 선형 미분방정식의 활용

4.1 2계 선형모형

4.2 2계 연립 선형 미분방정식의 모형

연습문제

Chapter 05 고계 선형 미분방정식

5.1 상수계수를 갖는 제차 선형 미분방정식

5.2 미정계수법

5.3 매개변수 변환법

5.4 코시-오일러 방정식

연습문제

Chapter 06 라플라스 변환

6.1 라플라스 변환

6.2 라플라스 변환의 성질

6.3 합성곱과 주기함수의 라플라스 변환

6.4 라플라스 변환의 활용

연습문제

PART 02 벡터와 선형대수

Chapter 07 벡터와 벡터공간

7.1 벡터

7.2 내적

7.3 벡터곱

7.4 3차원 공간에서의 직선과 평면

7.5 벡터공간

연습문제

Chapter 08 행렬과 연립 선형방정식

8.1 행렬과 연산

8.2 연립 선형방정식과 가우스 소거법

8.3 행렬의 계수

8.4 행렬식

8.5 역행렬

연습문제

Chapter 09 행렬의 활용

9.1 크래머 법칙

9.2 고윳값과 고유벡터

9.3 고윳값 문제의 활용

9.4 직교행렬

9.5 대각화

연습문제

Chapter 10 벡터 미적분

10.1 벡터함수

10.2 속도, 가속도, 곡률과 가속도의 성분

10.3 방향도함수

10.4 발산과 회전

10.5 선적분

10.6 경로에 무관한 선적분

10.7 중적분

10.8 그린 정리

10.9 면적분

10.10 발산정리

10.11 스토크스 정리

연습문제

PART 03 푸리에 해석과 편미분방정식

Chapter 11 푸리에 급수

11.1 푸리에 급수

11.2 푸리에 코사인 급수와 사인 급수

11.3 복소 푸리에 급수

연습문제

Chapter 12 푸리에 적분과 푸리에 변환

12.1 푸리에 적분

12.2 복소 푸리에 적분

12.3 푸리에 변환

연습문제

Chapter 13 편미분방정식

13.1 기본 개념

13.2 열전도방정식

13.3 파동방정식

13.4 라플라스 방정식

연습문제

PART 04 복소해석

Chapter 14 복소함수

14.1 복소수

14.2 거듭제곱과 거듭제곱근

14.3 복소수 집합

14.4 복소함수

14.5 코시-리만 방정식

14.6 지수함수와 로그함수

14.7 삼각함수와 쌍곡선함수

14.8 역삼각함수와 역쌍곡선함수

연습문제

Chapter 15 복소적분법

15.1 선적분

15.2 코시 적분정리

15.3 경로에 무관한 선적분

15.4 코시 적분공식

연습문제

Chapter 16 급수와 유수

16.1 테일러 급수

16.2 로랑 급수

16.3 특이점과 영점

16.4 유수와 유수정리

16.5 실적분의 계산

연습문제

Appendix A 미분법 기초

수학 기초

A.1 도함수

A.2 여러 함수의 미분법

A.3 편도함수

Appendix B 적분법 기초

B.1 부정적분과 정적분

B.2 여러 함수의 적분법

B.3 부분분수에 의한 적분법

B.4 부분적분법

저자 소개2

전북대학교 수학과를 졸업한 뒤 동대학원에서 이학석사 학위를, 전남대학교에서 이학박사 학위를 받았다. 미국 어번대학교에서 객원교수를 지냈다. 1982년부터 전북대학교에 재직하였으며 현재 전북대학교 수학과 명예교수이다. 주요 연구 분야는 대수학이다. 대한수학회, 호남수학회, 한국여성수학회에서 회원으로 활동하고 있다. 『Introductory Linear Algebra』(경문사, 2012)를 공동집필하고 『기초 공업수학』(한빛아카데미, 2017)을 집필하였으며, 『공학수학 Ⅰ(5판)』(텍스트북스, 2014)과 『미분적분학 Ⅰ(2판)』(교우사, 2017)을 공동번역하였다.

감수박재균

관심작가 알림신청
 
서울대학교 토목공학과를 졸업한 뒤 UC 버클리대학교에서 박사 학위를 받았다. 동대학원에서 박사후연구원, 서울대학교 BK연구교수를 지낸 뒤 2004년부터 단국대학교 토목환경공학과 교수로 재직 중이다. 주요 연구 분야는 전산역학과 관계된 모델링과 해석이며, 공학수학, 응용역학, 연속체역학, 유한요소해석 등을 강의하고 있다. 최근에는 소성 연화현상에 따르는 시스템의 불안정성에 대한 연구에 관심을 갖고 있다. 『유한요소법입문』(문운당, 2009)을 공동집필하고, 『Beer의 정역학과 재료역학 (3판)』(한빛아카데미, 2022)을 공동번역하였다.

박재균의 다른 상품

품목정보

발행일
2023년 10월 30일
쪽수, 무게, 크기
704쪽 | 188*257*27mm
ISBN13
9791156646778

출판사 리뷰

두 학기용으로 안성맞춤인 공학수학 교재

[기초 공업수학]이 한 학기용 교재였다면, [공학수학 에센스]는 두 학기용으로 교재입니다. 이 책은 공학수학을 크게 상미분방정식, 벡터와 선형대수, 푸리에 해석과 편미분방정식, 복소해석 네 가지 PART로 나누었습니다. PART 01에서는 미분방정식을 1계, 2계, 그 이상의 고계로 나누어 상세히 설명하고, 라플라스 변환을 이용하여 새롭게 미분방정식을 푸는 방법을 알아봅니다. PART 02에서는 벡터와 선형대수를 필요한 만큼만 살펴보고, 미적과 적분의 심화 내용인 벡터 미적분까지 다룹니다. PART 03에서는 푸리에 급수, 푸리에 적분, 푸리에 변환과 함께 미분방정식의 또다른 형태인 편미분방정식을 살펴봅니다. 마지막으로 PART 04에서는 복소함수와 복소적분, 그리고 복소적분에 필요한 급수와 유수 개념까지 다룹니다. 방대한 공학수학에서 꼭 필요한 내용만 엄선한, 제목 그대로 ‘에센스’입니다

리뷰/한줄평0

리뷰

첫번째 리뷰어가 되어주세요.

한줄평

첫번째 한줄평을 남겨주세요.

34,000
1 34,000