이미지 검색을 사용해 보세요
검색창 이전화면 이전화면
최근 검색어
인기 검색어

소득공제
로우코드 AI
문제 해결 중심의 ML 학습 방법: 노코드부터 로우코드, 커스텀 트레이닝까지
원제
Low-Code AI
가격
27,000
10 24,300
YES포인트?
1,350원 (5%)
5만원 이상 구매 시 2천원 추가 적립
결제혜택
카드/간편결제 혜택을 확인하세요

이미 소장하고 있다면 판매해 보세요.

  •  국내배송만 가능
  •  문화비소득공제 신청가능

카드뉴스로 보는 책

카드뉴스0
카드뉴스1
카드뉴스2
카드뉴스3
카드뉴스4
카드뉴스5
카드뉴스6
카드뉴스7

책소개

목차

1장 머신러닝에서 데이터로 의사 결정을 내리는 방법

_1.1 목표 및 사용 사례 파악하기
_1.2 엔터프라이즈 ML 워크플로
_1.3 요약

2장 데이터의 중요성

_2.1 사용 사례 및 데이터셋 개요
_2.2 데이터 및 파일 유형
_2.3 깃허브와 구글 코랩 개요
_2.4 요약

3장 머신러닝 라이브러리 및 프레임워크

_3.1 노코드 AutoML
_3.2 AutoML의 작동 방식
_3.3 서비스형 머신러닝
_3.4 로우코드 ML 프레임워크
_3.5 요약

4장 AutoML로 광고 미디어 채널의 매출 예측하기

_4.1 비즈니스 사용 사례: 미디어 채널의 매출 예측하기
_4.2 판다스, 맷플롯립, 시본으로 데이터셋 탐색하기
_4.3 AutoML로 선형 회귀 모델 학습시키기
_4.4 요약

5장 AutoML로 사기 거래 탐지하기

_5.1 비즈니스 사용 사례: 금융 거래 사기 탐지
_5.2 판다스, 맷플롯립, 시본으로 데이터셋 탐색하기
_5.3 분류 모델 및 지표
_5.4 AutoML로 분류 모델 학습시키기
_5.5 요약

6장 빅쿼리 ML로 선형 회귀 모델 학습시키기

_6.1 비즈니스 사용 사례: 전력 생산량
_6.2 빅쿼리 SQL로 데이터셋 정리하기
_6.3 선형 회귀 모델
_6.4 설명 가능한 AI
_6.5 빅쿼리 ML에서의 신경망
_6.6 심층 분석: 클라우드 셸로 클라우드 스토리지 파일 보기
_6.7 요약

7장 파이썬으로 사용자 정의 ML 모델 학습시키기

_7.1 비즈니스 사용 사례: 고객 이탈 예측
_7.2 노코드, 로우코드, 사용자 정의 코드 중 알맞은 ML 솔루션 선택하기
_7.3 판다스, 맷플롯립, 시본으로 데이터셋 탐색하기
_7.4 사이킷런으로 로지스틱 회귀 모델 구축하기
_7.5 케라스로 신경망 구축하기
_7.6 버텍스 AI로 맞춤형 ML 모델 구축하기
_7.7 요약

8장 사용자 정의 모델의 성능 개선하기

_8.1 비즈니스 사용 사례: 중고차 경매 가격
_8.2 사이킷런 모델 개선하기
_8.3 케라스로 모델 개선하기
_8.4 빅쿼리 ML에서 하이퍼파라미터 튜닝하기
_8.5 대규모 모델의 하이퍼파라미터 튜닝
_8.6 요약

9장 AI 여정의 다음 단계

_9.1 데이터 과학 더 깊이 알아보기
_9.2 ML 운영
_9.3 지속적인 학습 및 평가
_9.4 요약

찾아보기

저자 소개3

궨덜린 스트리플링

관심작가 알림신청
 

Gwendolyn Stripling

구글 클라우드에서 인공지능 및 머신러닝 콘텐츠 개발자로 일하며, 여러 사람이 생성형 AI 및 AI/ML 여정을 탐색할 수 있도록 돕고 있다. 유튜브에서 큰 인기를 얻은 ‘생성형 AI 소개(Introduction to Generative AI)’라는 영상을 제작했고, 링크드인 러닝에서 ‘신경망 소개(Introduction to Neural Networks)’라는 강의도 담당했다. 골든 게이트 대학교의 겸임 교수이며, 경영 분석 석사 과정 자문 위원회의 일원으로 활동한다. 이전에는 데이터 분석 회사인 클릭(Qlik)에서 데이터 분석 엔지니어, 클라우드 설계자, 기술 트레이너로 근무했
구글 클라우드에서 인공지능 및 머신러닝 콘텐츠 개발자로 일하며, 여러 사람이 생성형 AI 및 AI/ML 여정을 탐색할 수 있도록 돕고 있다. 유튜브에서 큰 인기를 얻은 ‘생성형 AI 소개(Introduction to Generative AI)’라는 영상을 제작했고, 링크드인 러닝에서 ‘신경망 소개(Introduction to Neural Networks)’라는 강의도 담당했다. 골든 게이트 대학교의 겸임 교수이며, 경영 분석 석사 과정 자문 위원회의 일원으로 활동한다. 이전에는 데이터 분석 회사인 클릭(Qlik)에서 데이터 분석 엔지니어, 클라우드 설계자, 기술 트레이너로 근무했다. 또한, 캘리포니아 도미니칸 대학교의 바로우스키(Barowsky) 경영 분석 학교, 골든 게이트 대학교의 아게노(Ageno) 경영 분석 학교, 구글 클라우드 NEXT, 구글의 벤처 캐피털리스트 및 스타트업 프로그램 등에서 발표하는 등 AI/ML 분야의 연사로도 활동 중이다.

마이클 아벨

관심작가 알림신청
 

Michael Abel

구글 클라우드의 전문 교육 프로그램 기술 책임자로, 차별화되고 비표준적인 학습 경험을 통해 고객의 클라우드 역량을 빠르게 향상시키는 데 힘쓰고 있다. 이전에는 구글 클라우드에서 데이터 및 머신러닝 기술 트레이너로 활동하며 ‘구글 클라우드에서의 머신러닝’, ‘구글 클라우드 머신러닝 집중 훈련 프로그램’, ‘구글 클라우드에서의 데이터 공학’ 등 구글 클라우드 교육 과정을 담당했다. 구글에 합류하기 전에는 듀크 대학교 수학과 방문 조교수로 재직하며 수학을 연구하고 수학과 학부생을 가르쳤다.
한국전자통신 연구원에서 네트워크 제어/관리/지능화 시스템을 구축하는 일을 하며, 컴퓨터에서 일어나는 전반적인 일에 관심이 많다. 특히 최근 몇 년간은 머신러닝 모델의 라이프사이클을 관리하고 머신러닝 시스템을 운영하는 MLOps와 더불어, 생성형 AI 모델을 튜닝하고 모델링하는 방법과 이를 운영하는 LLMOps 분야에도 많은 관심을 가지고 허깅 페이스 펠로(Hugging Face Fellow), 구글 디벨로퍼스 엑스퍼트(Google Developers Expert) 등 다양한 커뮤니티 활동을 병행하고 있다.

박찬성의 다른 상품

품목정보

발행일
2024년 12월 20일
쪽수, 무게, 크기
336쪽 | 183*235*14mm
ISBN13
9791169213301

출판사 리뷰

AI를 만나다: 로우코드로 시작하는 머신러닝 입문

머신러닝(ML)은 프로그래머가 직접 알고리즘을 제공하지 않고, 컴퓨터가 주어진 데이터로부터 스스로 알고리즘을 학습하는 방법입니다. 전문가 시스템은 도메인 전문가가 직접 규칙을 작성해야 하지만, 머신러닝은 데이터를 사용하여 그 규칙을 찾아내는 방식이라고 할 수 있습니다.

이러한 머신러닝은 오늘날 거의 모든 산업에 영향을 미칩니다. 소매업에서는 ML을 사용해 제품이나 서비스의 예상 판매량을 몇 달 전에 예측합니다. 여행 업계에서는 고객의 과거 여행 기록과 같은 정보를 기반으로 여행 지역과 관광 명소를 추천해줍니다. 의료 분야에서는 ML로 엑스레이 이미지를 분석해 건강한 폐인지 병든 폐인지 판단할 수 있으며, 의료 전문가가 더 자세히 살펴볼 특정 영역을 정확히 찾아낼 수도 있습니다. ML의 이러한 다양한 사용 사례는 그 자체만으로 책 한 권을 가득 채울 수 있습니다.

이 책은 기업의 의사 결정 과정에서 머신러닝을 효과적으로 활용하기 위한 실용적인 지침서입니다. 복잡한 코딩 없이도 AutoML, 빅쿼리 ML, 버텍스 AI 같은 로우코드 도구를 이용하여 데이터 분석, 모델 학습, 배포, 관리를 수행하는 방법을 단계별로 제시합니다. 특히 광고 미디어 채널 판매, 에너지 생산, 고객 이탈 등 몇 가지 구체적인 ML 사용 사례에 초점을 맞춰 설명합니다. 이러한 예제들은 여러분이 머신러닝의 개념을 쉽게 이해하고 실무에 적용할 수 있도록 도와줍니다.

로우코드 AI 도구들은 머신러닝의 진입 장벽을 낮추고, 비전문가도 AI 기술을 활용할 수 있도록 지원합니다. 특히 코딩 경험이 없거나 매우 적은 사람이라도 다양한 로우코드 AI 도구를 활용해 높은 성능의 모델을 구축할 수 있습니다. 여러분도 이 책에서 로우코드 AI 도구의 강력한 기능을 경험하고, 데이터 기반 의사 결정을 통해 비즈니스 가치를 창출할 수 있기를 기대합니다.

대상 독자

● ML을 업무에 빠르게 적용하려는 비즈니스 분석가, 데이터 분석가, 학생, 시민 데이터 과학자
● 데이터 과학이나 ML 공학 분야로 진로를 고려하는 사람
● 기본적인 프로그래밍의 개념과 파이썬 및 SQL 지식이 있는 누구나

이 책의 주요 내용:

● 정형 데이터와 비정형 데이터를 구별하고 그에 따른 문제 파악하기
● 데이터 시각화 및 분석하기
● 머신러닝 모델 입력을 위한 데이터 전처리하기
● 지도학습의 회귀 모델과 분류 모델 구별하기
● 노코드부터 로우코드, 커스텀 트레이닝까지 다양한 ML 모델 유형 및 아키텍처 비교하기
● ML 모델의 설계, 구현 및 조정하기

리뷰/한줄평5

리뷰

9.6 리뷰 총점

한줄평

첫번째 한줄평을 남겨주세요.

24,300
1 24,300