이 책은 2019년에 나왔던 책의 개정판이라고 한다. 1판과 달리 2판에서는 사이킷런 1.0버전에 맞게 바뀐 내용을 표기해서 적고 있고, 책의 전반적인 내용도 머신러닝을 다루고 있기에 사이킷런에 대한 모든 클래스와 함수들을 살펴보는데 주력을 하고 있다.
이 책의 가장 좋은 점은 물 흐르듯 설명을 이어나간다는 점을 들 수 있을 것 같다. 코드와 이론을 병행하면서 모델에 대한 기본적인 이해를 사용한 후 어떤 상황에서 어떤 함수를 써야하는지를 코드로 보여주고 있어 지식과 실습을 겸비할 수 있어 무척 좋다고 느껴졌다.
또한 어떻게 데이터를 전처리 하는지를 데이터의 유형에 따라 세부적으로 나뉘었으며, 이를 바탕으로 어떤 모델을선택할지, 어떤식으로 분석할지 일련의 과정을 하나하나 세세히 설명하고 있어, 정말 이 책 한권이면 추후에 어느 모델로 어떤 데이터를 분석하더라도 금방금방 찾아서 확인할수 있을 좋은 내용의 책이란게 느껴졌다. O'REILLY에서 낸 건 늘 믿을만 했는데, 이번 책에서도 그 점이 잘 느껴졌다.
사실 최근 딥러닝이 주목을 받기에 상대적으로 단순하다고 느껴지는 머신러닝이 덜 주목을 받고 있어 나조차도 관심이 소홀하다고 느껴지는게 많았는데, 이 책의 내용을 차근차근 살펴보니 생각보다 정리해야하는 내용이 많다는것이 느껴졌고, 그만큼 알차고 좋은 내용이 많다는 것도 잘 다가왔다. 머신러닝의 모델 뿐 아니라 어떤 식으로 더 고도화를 할지, 더 적합한 데이터셋을 만드는지에 대한 노하우도 잘 실려있어서 전반적인 모델을 사용한 프로젝트에 큰 도움을 줄 수 있다고 느껴진다.