확장메뉴
주요메뉴


닫기
사이즈 비교
소득공제
심층 학습

심층 학습

[ 2019년 대한민국학술원 우수학술도서 선정도서 ] 제이펍-I♥A.I 시리즈이동
리뷰 총점8.9 리뷰 11건 | 판매지수 1,398
베스트
IT 모바일 top100 11주
정가
42,000
판매가
37,800 (10% 할인)
신상품이 출시되면 알려드립니다. 시리즈 알림신청

품목정보

품목정보
발행일 2018년 10월 31일
쪽수, 무게, 크기 908쪽 | 1530g | 188*245*35mm
ISBN13 9791188621422
ISBN10 1188621424

이 상품의 태그

그릿 (50만 부 판매 기념 리커버 골드에디션)

그릿 (50만 부 판매 기념 리커버 골드에디션)

16,200 (10%)

'그릿 (50만 부 판매 기념 리커버 골드에디션)' 상세페이지 이동

비전공자도 이해할 수 있는 AI 지식

비전공자도 이해할 수 있는 AI 지식

17,820 (10%)

'비전공자도 이해할 수 있는 AI 지식' 상세페이지 이동

우리가 빛의 속도로 갈 수 없다면

우리가 빛의 속도로 갈 수 없다면

12,600 (10%)

'우리가 빛의 속도로 갈 수 없다면' 상세페이지 이동

팩트풀니스

팩트풀니스

17,820 (10%)

'팩트풀니스' 상세페이지 이동

나는 4시간만 일한다

나는 4시간만 일한다

15,120 (10%)

'나는 4시간만 일한다' 상세페이지 이동

혼자 공부하는 머신러닝+딥러닝

혼자 공부하는 머신러닝+딥러닝

23,400 (10%)

'혼자 공부하는 머신러닝+딥러닝' 상세페이지 이동

떨림과 울림

떨림과 울림

13,500 (10%)

'떨림과 울림' 상세페이지 이동

지금 이 순간을 살아라

지금 이 순간을 살아라

11,250 (10%)

'지금 이 순간을 살아라' 상세페이지 이동

딥 워크

딥 워크

15,300 (10%)

'딥 워크' 상세페이지 이동

Clean Code 클린 코드

Clean Code 클린 코드

29,700 (10%)

'Clean Code 클린 코드' 상세페이지 이동

밑바닥부터 시작하는 딥러닝

밑바닥부터 시작하는 딥러닝

21,600 (10%)

'밑바닥부터 시작하는 딥러닝 ' 상세페이지 이동

클린 아키텍처

클린 아키텍처

26,100 (10%)

'클린 아키텍처' 상세페이지 이동

객체지향의 사실과 오해

객체지향의 사실과 오해

18,000 (10%)

'객체지향의 사실과 오해' 상세페이지 이동

한 권으로 읽는 컴퓨터 구조와 프로그래밍

한 권으로 읽는 컴퓨터 구조와 프로그래밍

31,500 (10%)

'한 권으로 읽는 컴퓨터 구조와 프로그래밍' 상세페이지 이동

최소한의 선의

최소한의 선의

13,500 (10%)

'최소한의 선의' 상세페이지 이동

이펙티브 자바 Effective Java 3/E

이펙티브 자바 Effective Java 3/E

32,400 (10%)

'이펙티브 자바 Effective Java 3/E' 상세페이지 이동

HTTP 완벽 가이드

HTTP 완벽 가이드

35,100 (10%)

'HTTP 완벽 가이드' 상세페이지 이동

인공지능 쫌 아는 10대

인공지능 쫌 아는 10대

11,700 (10%)

'인공지능 쫌 아는 10대' 상세페이지 이동

밑바닥부터 시작하는 딥러닝 3

밑바닥부터 시작하는 딥러닝 3

34,200 (10%)

'밑바닥부터 시작하는 딥러닝 3' 상세페이지 이동

테스트 주도 개발

테스트 주도 개발

22,500 (10%)

'테스트 주도 개발' 상세페이지 이동

책소개 책소개 보이기/감추기

목차 목차 보이기/감추기

1장 소개 1
1.1 이 책의 대상 독자 10
1.2 심층 학습의 역사적 추세 13

제1부 응용 수학과 기계 학습의 기초 29
2장 선형대수 31
2.1 스칼라, 벡터, 행렬, 텐서 32
2.2 행렬과 벡터의 곱셈 35
2.3 단위행렬과 역행렬 37
2.4 일차종속과 생성공간 38
2.5 노름 41
2.6 특별한 종류의 행렬과 벡터 43
2.7 고윳값 분해 44
2.8 특잇값 분해 47
2.9 무어-펜로즈 유사역행렬 48
2.10 대각합 연산자 49
2.11 행렬식 50
2.12 예: 주성분분석 50

3장 확률론과 정보 이론 57
3.1 확률의 필요성 58
3.2 확률변수 60
3.3 확률분포 61
3.4 주변확률 63
3.5 조건부 확률 64
3.6 조건부 확률의 연쇄법칙 64
3.7 독립과 조건부 독립 65
3.8 기댓값, 분산, 공분산 65
3.9 흔히 쓰이는 확률분포들 67
3.10 흔히 쓰이는 함수들의 유용한 성질들 74
3.11 베이즈 법칙 76
3.12 연속 변수의 특별한 세부 사항 76
3.13 정보 이론 79
3.14 구조적 확률 모형 83

4장 수치 계산 87
4.1 넘침과 아래넘침 87
4.2 나쁜 조건화 89
4.3 기울기 벡터 기반 최적화 90
4.4 제약 있는 최적화 100
4.5 예제: 선형 최소제곱 문제 104

5장 기계 학습의 기초 107
5.1 학습 알고리즘 108
5.2 수용력, 과대적합, 과소적합 121
5.3 초매개변수와 검증 집합 133
5.4 추정량, 편향, 분산 135
5.5 최대가능도 추정 145
5.6 베이즈 통계학 149
5.7 지도 학습 알고리즘 154
5.8 비지도 학습 알고리즘 161
5.9 확률적 경사 하강법 167
5.10 기계 학습 알고리즘 만들기 169
5.11 심층 학습의 개발 동기가 된 기존 문제점들 171

제2부 현세대 심층 신경망의 실제 183
6장 심층 순방향 신경망 185
6.1 예제: XOR의 학습 189
6.2 기울기 기반 학습 194
6.3 은닉 단위 211
6.4 아키텍처 설계 218
6.5 역전파와 기타 미분 알고리즘들 225
6.6 역사적 참고사항 247

7장 심층 학습을 위한 정칙화 251
7.1 매개변수 노름 벌점 253
7.2 제약 있는 최적화로서의 노름 벌점 261
7.3 정칙화와 과소제약 문제 263
7.4 자료 집합의 증강 265
7.5 잡음에 대한 강인성 267
7.6 준지도 학습 269
7.7 다중 과제 학습 270
7.8 조기 종료 271
7.9 매개변수 묶기와 매개변수 공유 279
7.10 희소 표현 281
7.11 배깅과 기타 앙상블 학습법 283
7.12 드롭아웃 285
7.13 대립 훈련 296
7.14 접선 거리, 접선 전파, 다양체 접선 분류기 298

8장 심층 모형의 훈련을 위한 최적화 기법 303
8.1 학습과 순수한 최적화의 차이점 304
8.2 신경망 최적화의 난제들 312
8.3 기본 알고리즘 324
8.4 매개변수 초기화 전략 332
8.5 학습 속도를 적절히 변경하는 알고리즘들 339
8.6 근사 2차 방법들 344
8.7 최적화 전략과 메타알고리즘 352

9장 합성곱 신경망 367
9.1 합성곱 연산 368
9.2 동기 372
9.3 풀링 377
9.4 무한히 강한 사전분포로서의 합성곱과 풀링 382
9.5 기본 합성곱 함수의 여러 변형 383
9.6 구조적 출력 394
9.7 자료 형식 396
9.8 효율적인 합성곱 알고리즘 397
9.9 무작위 특징 또는 비지도 특징 학습 398
9.10 합성곱 신경망의 신경과학적 근거 400
9.11 합성곱 신경망으로 본 심층 학습의 역사 408

10장 순차열 모형화를 위한 순환 신경망과 재귀 신경망 411
10.1 계산 그래프 펼치기 413
10.2 순환 신경망 417
10.3 양방향 순환 신경망 433
10.4 부호기-복호기 순차열 대 순차열 아키텍처 435
10.5 심층 순환 신경망 437
10.6 재귀 신경망 439
10.7 장기 의존성의 어려움 440
10.8 반향 상태 신경망 443
10.9 누출 단위 및 여러 다중 시간 축척 전략 446
10.10 장단기 기억과 기타 게이트 제어 RNN들 449
10.11 장기 의존성을 위한 최적화 453
10.12 명시적 기억 457

11장 실천 방법론 463
11.1 성과 측정 465
11.2 기준 모형 468
11.3 추가 자료 수집 여부 결정 469
11.4 초매개변수 선택 471
11.5 디버깅 전략 480
11.6 예제: 여러 자리 수의 인식 485

12장 응용 489
12.1 대규모 심층 학습 489
12.2 컴퓨터 시각 500
12.3 음성 인식 506
12.4 자연어 처리 510
12.5 기타 응용들 529

제3부 심층 학습 연구 539
13장 선형 인자 모형 542
13.1 확률적 PCA와 인자분석 544
13.2 독립성분분석(ICA) 545
13.3 느린 특징 분석 548
13.4 희소 부호화 551
13.5 PCA의 다양체 해석 555

14장 자동부호기 557
14.1 과소완전 자동부호기 558
14.2 정칙화된 자동부호기 559
14.3 표현력, 층의 크기, 모형의 깊이 564
14.4 확률적 부호기와 복호기 565
14.5 잡음 제거 자동부호기 567
14.6 자동부호기로 다양체 배우기 572
14.7 축약 자동부호기 577
14.8 예측 희소 분해 580
14.9 자동부호기의 응용 581

15장 표현 학습 583
15.1 탐욕적 층별 비지도 사전훈련 585
15.2 전이 학습과 영역 적응 594
15.3 준지도 학습 기법을 이용한 원인 분리 599
15.4 분산 표현 604
15.5 깊이의 지수적 이득 610
15.6 바탕 원인을 발견하기 위한 단서 제공 612

16장 심층 학습을 위한 구조적 확률 모형 617
16.1 비구조적 모형화의 문제점 618
16.2 그래프를 이용한 모형 구조의 서술 623
16.3 그래프 모형의 표본추출 641
16.4 구조적 모형화의 장점 643
16.5 종속관계의 학습 643
16.6 추론과 근사 추론 645
16.7 구조적 확률 모형에 대한 심층 학습 접근 방식 ······646

17장 몬테카를로 방법 653
17.1 표본추출과 몬테카를로 방법 654
17.2 중요도 표집 656
17.3 마르코프 연쇄 몬테카를로 방법 659
17.4 기브스 표집 664
17.5 분리된 모드 사이의 혼합과 관련된 어려움들 ·········665

18장 분배함수 공략 671
18.1 로그가능도의 기울기 672
18.2 확률적 최대가능도와 대조 발산 675
18.3 유사가능도 682
18.4 점수 부합과 비 부합 685
18.5 잡음 제거 점수 부합 688
18.6 잡음 대조 추정 688
18.7 분배함수의 추정 692

19장 근사 추론 701
19.1 최적화로서의 추론 702
19.2 기댓값 최대화 704
19.3 MAP 추론과 희소 부호화 706
19.4 변분 추론과 변분 학습 708
19.5 학습된 근사 추론 724

20장 심층 생성 모형 727
20.1 볼츠만 기계 727
20.2 제한 볼츠만 기계 730
20.3 심층 믿음망 733
20.4 심층 볼츠만 기계 737
20.5 실숫값 자료에 대한 볼츠만 기계 751
20.6 합성곱 볼츠만 기계 759
20.7 구조적 출력 또는 순차열 출력을 위한 볼츠만 기계 ·······762
20.8 기타 볼츠만 기계 763
20.9 확률적(무작위) 연산에 대한 역전파 764
20.10 유향 생성망 770
20.11 자동부호기의 표본추출 791
20.12 생성 확률적 신경망 794
20.13 기타 생성 방안들 796
20.14 생성 모형의 평가 797
20.15 결론 800

참고문헌 803
찾아보기 869

저자 소개 (4명)

책 속으로 책속으로 보이기/감추기

좀 더 일반적으로는 심층 학습을 포함한 기계 학습의(그리고 더 크게는 인공지능 분야 전체의) 용어 중 다른 학문 분야에서 비롯된 것들이 많다는 점을 고려해서, 용어 선택 시 관련 분야 학회 또는 단체의 관례를 최대한 따랐습니다. 예를 들어 대한수학회의 수학 용어집과 한국통계학회의 통계용어 자료실, 한국정보통신기술협회의 정보통신용어사전 등을 주되게 참고했습니다. --- p.xiv

제1부에서 다루는 기본 틀은 그리 깊지 않은 기계 학습 접근 방식들을 포함한 아주 다양한 기계 학습 알고리즘들의 토대이다. 이후의 부들은 바로 이 틀 안에서 심층 학습 알고리즘들을 전개한다. --- p.30

앞에서 자주 쓰이는 몇 가지 추정량의 정의를 소개하고 그 성질들을 분석해 보았다. 그런데 애초에 사람들이 그런 추정량들을 어떻게 고안했을까? 그냥 좋은 추정량이 될 것 같은 함수들을 떠올려서 그 편향과 분산을 분석하는 주먹구구식 방법 대신, 주어진 모형에 대해 좋은 추정량이 될 가능성이 있는 구체적인 함수들을 어떤 원리에 따라 유도할 수 있다면 좋을 것이다. --- p.145

가중치 감쇄는 모형 매개변수들에 직접 벌점을 가해서 모형을 정칙화한다. 그렇게 하는 대신, 신경망 단위들의 활성화 함수에 벌점을 가함으로써 활성화 값들이 희소해지는 쪽으로 모형을 이끄는 전략도 있다. 이는 모형 매개변수들에 단순하지 않은 벌점을 간접적으로 부여하는 한 방법이라 할 수 있다. --- p.281

RNN은 그림 10.5에서처럼 하나의 입력 순차열을 고정 크기 벡터로 사상할 수도 있고, 그림 10.9에서처럼 하나의 고정 크기 벡터를 하나의 순차열로 사상할 수도 있다. 또한, 그림 10.3, 10.4, 10.10, 10.11은 입력 순차열을 같은 길이의 출력 순차열로 사상하는 RNN을 보여주었다.
--- p.435

출판사 리뷰 출판사 리뷰 보이기/감추기

심층 학습을 위한 완벽한 참고서이자 바이블!

기계 학습의 한 형태인 심층 학습을 이용하면 컴퓨터가 개념들의 계통구조를 통해서 세계를 경험하고 이해하게 만들 수 있다. 심층 학습에서는 컴퓨터가 경험에서 지식을 수집하므로, 컴퓨터에 필요한 모든 지식을 사람(컴퓨터 운영자)이 일일이 지정할 필요가 없다. 그리고 개념들의 계통구조 덕분에 컴퓨터는 간단한 개념들을 조합해서 좀 더 복잡한 개념을 배우게 된다. 그러한 계통구조의 그래프는 다수의 층으로 이루어진 ‘심층’ 구조를 가질 수 있다. 이 책은 심층 학습의 다양한 주제를 소개한다.

독자가 이 책을 읽는 데 필요한 수학적, 개념적 토대를 마련할 수 있도록, 이 책은 우선 심층 학습과 관련된 선형대수, 확률론, 정보 이론, 수치 계산, 기계 학습의 여러 주요 개념을 소개한다. 그런 다음에는 심층 순방향 신경망, 정칙화, 최적화 알고리즘, 합성곱 신경망, 순차열 모형화 등등 업계 실무자들이 사용하는 여러 심층 학습 기법들을 설명하고, 현실적인 심층 학습 실천 방법론도 소개한다. 또한 자연어 처리, 음성 인식, 컴퓨터 시각, 온라인 추천 시스템, 생물정보학, 비디오 게임을 위해 심층 학습을 응용하는 방법들도 개괄한다. 마지막으로는 연구의 관점에서 심층 학습을 살펴보는데, 이를테면 선형 인자 모형, 자동부호기, 표현 학습, 구조적 확률 모형, 몬테카를로 방법 같은 이론 연구 주제들을 소개한다.

《심층 학습》은 업계 또는 학계에서 연구자로서의 경력을 준비하는 학부생이나 대학원생은 물론이고 자신의 제품이나 플랫폼에서 심층 학습을 사용하고자 하는 소프트웨어 기술자들을 위한 책이다. 독자와 강사에게 도움이 될 보충 자료는 부록 웹사이트에 올려 두었다.

추천평 추천평 보이기/감추기

심층 학습을 상세히 다룬 책은 이 분야의 세 전문가가 쓴 《심층 학습》이 유일하다. 이 책은 이 분야에 진입하려는 소프트웨어 기술자와 학생이 꼭 갖추어야 할 넓은 관점과 수학적 사전 지식을 제공할 뿐만 아니라, 이 분야의 권위자들에게도 참고자료가 된다.
- 일론 머스크 (OpenAI 공동 의장이자 Tesla와 SpaceX의 공동 창업자 및 CEO)
이 책은 심층 학습 최고의 교과서이다. 이 분야의 주요 기여자들이 저술한 이 책은 명확하고, 상세하며, 신뢰할 수 있다. 심층 학습이 어디에서 왔고, 어디에 좋으며, 어디로 가고 있는지 알고 싶다면 이 책을 읽기 바란다.
- 제프리 힌턴 FRS (토론토 대학교 명예 교수이자 구글의 특훈 연구 과학자)
2010년대 초반부터 심층 학습은 관련 기술 업계를 강타했다. 학생과 실무자, 강사를 위한 기본 개념과 실무적인 측면들, 그리고 고급 연구 주제를 망라하는 교과서를 찾는 요구가 있었다. 이 책은 이 분야에서 가장 혁신적이고 활동적인 연구자들이 쓴, 이 주제에 관한 최초이면서 상세한 교과서이다. 이 책은 오랫동안 하나의 기준이 될 것이다.
- 얀 르쿤 (페이스북 AI 연구 책임자이자 뉴욕 대학교 컴퓨터 과학/데이터 과학/신경과학 실버 석좌교수)

회원리뷰 (4건) 회원리뷰 이동

한줄평 (7건) 한줄평 이동

총 평점 8.3점 8.3 / 10.0

배송/반품/교환 안내

배송 안내
반품/교환 안내에 대한 내용입니다.
배송 구분 예스24 배송
  •  배송비 : 무료배송
포장 안내

안전하고 정확한 포장을 위해 CCTV를 설치하여 운영하고 있습니다.

고객님께 배송되는 모든 상품을 CCTV로 녹화하고 있으며, 철저한 모니터링을 통해 작업 과정에 문제가 없도록 최선을 다 하겠습니다.

목적 : 안전한 포장 관리
촬영범위 : 박스 포장 작업

  • 포장안내1
  • 포장안내2
  • 포장안내3
  • 포장안내4
반품/교환 안내

상품 설명에 반품/교환과 관련한 안내가 있는경우 아래 내용보다 우선합니다. (업체 사정에 따라 달라질 수 있습니다)

반품/교환 안내에 대한 내용입니다.
반품/교환 방법
  •  고객만족센터(1544-3800), 중고샵(1566-4295)
  •  판매자 배송 상품은 판매자와 반품/교환이 협의된 상품에 한해 가능합니다.
반품/교환 가능기간
  •  출고 완료 후 10일 이내의 주문 상품
  •  디지털 콘텐츠인 eBook의 경우 구매 후 7일 이내의 상품
  •  중고상품의 경우 출고 완료일로부터 6일 이내의 상품 (구매확정 전 상태)
반품/교환 비용
  •  고객의 단순변심 및 착오구매일 경우 상품 반송비용은 고객 부담임
  •  직수입양서/직수입일서중 일부는 변심 또는 착오로 취소시 해외주문취소수수료 20%를 부과할수 있음

    단, 아래의 주문/취소 조건인 경우, 취소 수수료 면제

    •  오늘 00시 ~ 06시 30분 주문을 오늘 오전 06시 30분 이전에 취소
    •  오늘 06시 30분 이후 주문을 익일 오전 06시 30분 이전에 취소
  •  직수입 음반/영상물/기프트 중 일부는 변심 또는 착오로 취소 시 해외주문취소수수료 30%를 부과할 수 있음

    단, 당일 00시~13시 사이의 주문은 취소 수수료 면제

  •  박스 포장은 택배 배송이 가능한 규격과 무게를 준수하며, 고객의 단순변심 및 착오구매일 경우 상품의 반송비용은 박스 당 부과됩니다.
반품/교환 불가사유
  •  소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
  •  소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우 : 예) 화장품, 식품, 가전제품, 전자책 단말기 등
  •  복제가 가능한 상품 등의 포장을 훼손한 경우 : 예) CD/LP, DVD/Blu-ray, 소프트웨어, 만화책, 잡지, 영상 화보집
  •  소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우
  •  디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  •  eBook 대여 상품은 대여 기간이 종료 되거나, 2회 이상 대여 했을 경우 취소 불가
  •  중고상품이 구매확정(자동 구매확정은 출고완료일로부터 7일)된 경우
  •  LP상품의 재생 불량 원인이 기기의 사양 및 문제인 경우 (All-in-One 일체형 일부 보급형 오디오 모델 사용 등)
  •  시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  •  전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우
소비자 피해보상
  •  상품의 불량에 의한 반품, 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결기준(공정거래위원회 고시)에 준하여 처리됨
환불 지연에
따른 배상
  •  대금 환불 및 환불 지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리
스프링분철 서비스를 선택하세요.
수량감소 수량증가 37,800
  •  다운받은 받은 쿠폰은 결제 페이지에서 적용해 주세요.
  •  분철옵션 선택 시, 배송일이 변경될 수 있습니다.
  •  분철상품은 해외배송이 불가합니다.
1   37,800

스프링분철 신청 가능

뒤로 앞으로 맨위로 공유하기